Math 325K	Fall 2018
Midterm I	Exam #1

October 4th, 2018

Name: _____

I promise that I will abide by the UT Austin Honor Code while taking this exam.

Signature:

Instructions:

- Time: 75 minutes.
- Score: 40+6 points. This exam counts 20% in your final grades.
- No textbooks, notes, cheat sheets, electronic devices allowed in this exam.
- You need to justify your answers for problems other than True/False and Multiple Choices.
- Please write your answers within the boxes on each page.
- You may request for more scratch papers.

Name	Valid Argument Form
Modus Ponens	p
	$p \rightarrow q$
	$\therefore q$
Modus Tollens	$p \rightarrow q$
	$\sim q$
	$\therefore \sim p$
Generalization	p
	$\therefore p \lor q$
Specialization	$p \wedge q$
	$\therefore p$
	p
Conjunction	q
	$\therefore p \land q$
	$p \lor q$
Elimination	$\sim q$
	$\therefore p$
	$p \rightarrow q$
Transitivity	$q \rightarrow r$
	$\therefore p \rightarrow r$
	$p \lor q$
Division into Cases	$p \rightarrow r$
	$q \rightarrow r$
Contradiction Rule	$\sim p \rightarrow c(contradiction)$
	$\therefore p$
	$\forall x \in D, I(x) \to Q(x)$
Universal Modus Ponens	$u \in D$ P(a)
	(a)
	$\forall r \in D \ P(r) \to O(r)$
	$\begin{array}{c} vx \in D, I(x) \to Q(x) \\ a \in D \end{array}$
Universal Modus Tollens	$\sim Q(a)$
	$\therefore \sim P(a)$
	••• = (•••)

The following table is a summary of some valid argument forms (rules of inference):

2. (8 pts) Multiple choices: there is **exactly one** correct answer for each question. You get 4 pts for each correct choice, 1 pt for **NOT** answering each question, and 0 pt for each incorrect/multiple choice. You **do not** need to justify your answer.

(1) Which of the following statements is **NOT** logically equivalent to the negation of the statement "some spicy tacos are vegetarian"?

- (a) All vegetarian tacos are not spicy.
- (b) All non-spicy tacos are vegetarian.
- (c) For any taco t, if t is spicy, then t is not vegetarian.
- (d) For any taco t, t is not spicy or not vegetarian.

- (2) Which of the following arguments is invalid?
- (a) If I drank coffee last night, I could not fall a sleep; I did fall asleep last night; \therefore I didn't drink coffee last night.
- (b) If Jane listens to music on the bus, then she is happy; if Jane reads a book on the bus, then she is happy; Jane either listens to music or reads a book on the bus; ∴ Jane is happy.
- (c) If John is at least 16 years old, then he can have a driver's license; If one has a driver's license, then he/she has a photo ID; John is 15 years old; ∴ John does not have a photo ID.
- (d) Any Canadian citizen can travel in the Schengen area without a visa for up to 90 days; Italy is a country in the Schengen area; Alice is a Canadian citizen; ∴ Alice can travel in Italy without a visa for up to 90 days.

3. (4 pts) Prove that the statement form

 $p \to (q \to p)$

is a tautology.

4. (5 pts) The Exclusive OR (XOR for short) is another binary logical connective, denoted by the symbol \oplus , its truth table is as follows:

p	q	$p\oplus q$
T	T	F
T	F	T
F	T	T
F	F	F

Question: Is the statement form $(p \oplus q) \oplus r$ logically equivalent to the statement form $p \oplus (q \oplus r)$? Justify your answer.

5. (4 pts) Prove that for any integers a and b, if 2 divides a - b, then 2 divides $a^2 + b^2$.

6. (6 pts) Let $D(\boldsymbol{x},\boldsymbol{y})$ be the binary predicate " \boldsymbol{x} divides \boldsymbol{y} ". Rewrite the statement

 $\exists x \in \mathbb{N} \text{ such that } (x > 1) \land \left(\forall y \in \mathbb{N}, D(x, y^2) \to D(x, y) \right).$

in an English sentence, and determine whether it is true or false. Justify your answer.

7. (5 pts) Let n > 1 be a composite number. Prove that there exists at least one prime divisor of n that is less than or equals to \sqrt{n} .

8. Extra Problem. (6 pts)

(1) (2 pt) Prove that for any two integers m and n, if $m \mod 4 = n \mod 4 = 1$, then $mn \mod 4 = 1$.

(2) (4 pt) Prove that there exist infinitely many prime numbers p such that $p \mod 4 = 3$. (Hint: proof by contradiction)