Math 325K - Lecture 17 Section 7.1 Functions defined on general sets

Bo Lin

October 30th, 2018

Bo Lin Math 325K - Lecture 17 Section 7.1 Functions defined on gener

.

Outline

- Definitions.
- Properties of functions.
- Examples of functions.

伺 ト イヨト イヨト

Definition of functions

Recall the definition of functions in Chapter 1:

Definition

A function f from a set X to a set Y, denoted $f: X \to Y$, is a relation from the domain X to the co-domain Y such that every element in X is related to a unique element in Y. If we call this element y, then we say that "f sends x to y" or "f maps x to y", and write $x \xrightarrow{f} y$ or $f: x \to y$. The unique element to which f sends x is denoted f(x) and called "f of x" or "the value of f at x".

Range and preimage

Definition

For a function $f: X \to Y$, the range of f is the set

$$\{y \in Y \mid y = f(x) \text{ for some } x \in X\}.$$

同 ト イ ヨ ト イ ヨ ト

Range and preimage

Definition

For a function $f: X \to Y$, the range of f is the set

$$\{y \in Y \mid y = f(x) \text{ for some } x \in X\}.$$

Definition

For a function $f: X \to Y$ and any $y \in Y$, the **preimage** of y, denoted $f^{-1}(y)$, is the set

$$\{x \in X \mid f(x) = y\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Functions acting on sets

Definition

If $f: X \to Y$ is a function and $A \subseteq X$ and $C \subseteq Y$, then

$$f(A) = \{ y \in Y \mid y = f(x) \text{ for some } x \in A \}.$$

and

$$f^{-1}(C) = \{ x \in X \mid f(x) \in C \}$$

f(A) is called the image of A, and $f^{-1}(C)$ is called the inverse image of C.

The arrow diagrams

The arrow diagram is a type of figures that define functions.

伺 ト イヨト イヨト

The arrow diagrams

The arrow diagram is a type of figures that define functions.

-

The arrow diagrams

The **arrow diagram** is a type of figures that define functions.

In this example, $f(x_1) = y_2, f(x_2) = f(x_4) = y_4, f(x_3) = y_1.$

4 3 6 4 3 6

Example: arrow diagram

Example

Which of the following arrow diagrams correspond to a function?

伺 ト イヨト イヨト

Example: arrow diagram

Solution

(A) does not correspond a function because $x_1 \in X$ is related to 2 different element s in Y.

Example: arrow diagram

Solution

(A) does not correspond a function because $x_1 \in X$ is related to 2 different element s in Y.

(B) does not correspond a function because $x_3 \in X$ is not related to any element in Y.

Example: arrow diagram

Solution

(A) does not correspond a function because $x_1 \in X$ is related to 2 different element s in Y.

(B) does not correspond a function because $x_3 \in X$ is not related to any element in Y.

(C) corresponds to a function from X to Y.

Example: read information from arrow diagrams

Example

Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3, 4\}$. Consider the function $f : X \to Y$ given by the following arrow diagram.

- **What is** f(b)?
- What is the range of f?
- **(a)** What is $f^{-1}(2)$?
- **What is** $f^{-1}(1)$?
- What is $f(\{a,c\})$?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example: read information from arrow diagrams

Solution

(a) f(b) = 4.

Bo Lin Math 325K - Lecture 17 Section 7.1 Functions defined on gener

伺 ト イヨト イヨト

Example: read information from arrow diagrams

Solution

(a) f(b) = 4.
(b) The range of f is {2,4}.

伺 ト イヨ ト イヨト

Example: read information from arrow diagrams

Solution

(a) f(b) = 4.
(b) The range of f is {2,4}.
(c) f⁻¹(2) = {a,c}.

伺 ト く ヨ ト く ヨ ト

Example: read information from arrow diagrams

Solution

(a) f(b) = 4. (b) The range of f is $\{2, 4\}$. (c) $f^{-1}(2) = \{a, c\}$. (d) $f^{-1}(1) = \emptyset$.

伺 ト イ ヨ ト イ ヨ ト

Example: read information from arrow diagrams

.

Solution

(a)
$$f(b) = 4$$
.
(b) The range of f is $\{2, 4\}$.
(c) $f^{-1}(2) = \{a, c\}$.
(d) $f^{-1}(1) = \emptyset$.
(e) $f(\{a, c\}) = \{f(a), f(c)\} = \{2\}$

伺 ト イヨト イヨト

When two functions are equal

Definition

Two functions f and g are equal if and only if:

• they have the same domain D;

• for any
$$x \in D$$
, $f(x) = g(x)$.

When two functions are equal

Definition

Two functions f and g are equal if and only if:

• they have the same domain D;

• for any
$$x \in D$$
, $f(x) = g(x)$.

Remark

By definition, equal functions may have different co-domains. However, they must have the same range.

Example: equal functions

Example

Are the following pairs of functions f and g equal?

•
$$f: \mathbb{R} \to \mathbb{R}$$
 with $f(x) = x$ for all $x \in \mathbb{R}$; $g: \mathbb{R} \to \mathbb{R}$ with $g(x) = \sqrt{x^2}$ for all $x \in \mathbb{R}$.

- $f: \mathbb{R} \to \mathbb{R}$ with f(x) = |x| for all $x \in \mathbb{R}$; $g: \mathbb{R} \to \mathbb{R}$ with $g(x) = \sqrt{x^2}$ for all $x \in \mathbb{R}$.
- (a) $f: \mathbb{Z} \to \mathbb{Z}$ with $f(n) = n \mod 2$ for all $n \in \mathbb{Z}$; $g: \mathbb{Z} \to \{0, 1\}$ with

$$g(n) = \begin{cases} 0, & \text{ if } n \text{ is even}; \\ 1, & \text{ if } n \text{ is odd}. \end{cases}$$

for all $n \in \mathbb{Z}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example: equal functions

Solution

(a)
$$f(-1) = -1$$
 while $g(-1) = \sqrt{(-1)^2} = \sqrt{1} = 1$, so $f \neq g$.

Bo Lin Math 325K - Lecture 17 Section 7.1 Functions defined on gener

個 ト イヨト イヨト

Example: equal functions

Solution

(a)
$$f(-1) = -1$$
 while $g(-1) = \sqrt{(-1)^2} = \sqrt{1} = 1$, so $f \neq g$.
(b) Note that for all $x \in \mathbb{R}$, we have that $\sqrt{x^2} = |x|$, so $f = g$.

個 ト イヨト イヨト

Example: equal functions

Solution

(a)
$$f(-1) = -1$$
 while $g(-1) = \sqrt{(-1)^2} = \sqrt{1} = 1$, so $f \neq g$.
(b) Note that for all $x \in \mathbb{R}$, we have that $\sqrt{x^2} = |x|$, so $f = g$.
(c) f and g have the same domain and the same value for every element in the domain \mathbb{Z} , so $f = g$.

Whether a function is well-defined

When we define a function, we need to make sure that each element in the domain is indeed mapped to a unique element in the co-domain.

伺 ト イヨト イヨト

Whether a function is well-defined

When we define a function, we need to make sure that each element in the domain is indeed mapped to a unique element in the co-domain.

Consider the following relation F between \mathbb{Q} and \mathbb{Z} such that for all $\frac{m}{n} \in \mathbb{Q}$ with $m, n \in \mathbb{Z}$, we let $\left(\frac{m}{n}, m\right) \in F$. Is F a function?

高 とう きょう く ほ とう

Whether a function is well-defined

When we define a function, we need to make sure that each element in the domain is indeed mapped to a unique element in the co-domain.

Consider the following relation F between \mathbb{Q} and \mathbb{Z} such that for all $\frac{m}{n} \in \mathbb{Q}$ with $m, n \in \mathbb{Z}$, we let $\left(\frac{m}{n}, m\right) \in F$. Is F a function? The answer is "no". For the element "one half" in \mathbb{Q} , it could be expressed as $\frac{1}{2}$. By definition $\left(\frac{1}{2}, 1\right) \in F$. in addition, one half is also equal to $\frac{2}{4}$, so $\left(\frac{1}{2}, 2\right) \in F$. But any element in the domain of a function cannot be mapped to more than one element in the co-domain, so F is not a function.

高 とう きょう く ほ とう

Example: well-defined function

Example

Let $F : \mathbb{Q}^+ \to \mathbb{Z}$ such that for any $\frac{m}{n} \in \mathbb{Q}^+$ with $m, n \in \mathbb{N}$, we have that $F\left(\frac{m}{n}\right) = m$ div n. Is this F a well-defined function?

・ロト ・回ト ・ヨト ・ヨト

Example: well-defined function

Example

Let $F : \mathbb{Q}^+ \to \mathbb{Z}$ such that for any $\frac{m}{n} \in \mathbb{Q}^+$ with $m, n \in \mathbb{N}$, we have that $F\left(\frac{m}{n}\right) = m$ div n. Is this F a well-defined function?

Solution

Note that $m = n \cdot (m \ {\rm div} \ n) + m \ {\rm mod} \ n.$ Since $0 \leq m \ {\rm mod} \ n < n,$ we have that

$$n \cdot (m \text{ div } n) \leq m < n \cdot (m \text{ div } n+1).$$

Hence

$$m \operatorname{div} n \leq m/n < (m \operatorname{div} n) + 1.$$

It turns out that m div n is always the largest integer not exceeding $\frac{m}{n}$, so for different choices of m, n for the same positive rational number, we get the same value of F. So F is a well-defined function.

< ロ > < 同 > < 回 > < 回 >

Sequences could be viewed as functions defined on a subset of \mathbb{Z} : it is a function that maps n to a_n .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Power set

Recall that for any set A, $\mathscr{P}(A)$ is the power set of A. The following function F has domain $\mathscr{P}(A)$: for each $X \in \mathscr{P}(A)$, F(X) = |X|, the cardinality of X. Suppose $|A| = n \in \mathbb{N}$, what would be the range of F?

Power set

Recall that for any set A, $\mathscr{P}(A)$ is the power set of A. The following function F has domain $\mathscr{P}(A)$: for each $X \in \mathscr{P}(A)$, F(X) = |X|, the cardinality of X. Suppose $|A| = n \in \mathbb{N}$, what would be the range of F?

Solution

The cardinality of $X \in \mathscr{P}(A)$ is at least 0 and at most n. In addition, for any integer i between 0 and n, there exists some subset of A whose cardinality is i. Hence the range is

 $\{0,1,\ldots,n\}.$

Logarithms

Definition

Let b be a positive real number with $b \neq 1$. For each positive real number x, the **logarithm** with base b of x, written $\log_b x$, is the exponent to which b must be raised to obtain x. Symbolically,

 $\log_b x = y \Leftrightarrow b^y = x.$

The logarithmic function with base b is the function from R^+ to R that takes each positive real number x to $\log_b x$.

Logarithms

Definition

Let b be a positive real number with $b \neq 1$. For each positive real number x, the **logarithm** with base b of x, written $\log_b x$, is the exponent to which b must be raised to obtain x. Symbolically,

 $\log_b x = y \Leftrightarrow b^y = x.$

The logarithmic function with base b is the function from R^+ to R that takes each positive real number x to $\log_b x$.

Remark

Why do we require $b \neq 1$?

Logarithms

Definition

Let b be a positive real number with $b \neq 1$. For each positive real number x, the **logarithm** with base b of x, written $\log_b x$, is the exponent to which b must be raised to obtain x. Symbolically,

 $\log_b x = y \Leftrightarrow b^y = x.$

The logarithmic function with base b is the function from R^+ to R that takes each positive real number x to $\log_b x$.

Remark

Why do we require $b \neq 1$? Because the power of 1 is always 1, so it cannot be a general x.

< ロ > < 同 > < 三 > < 三 >

Example: logarithms

Example Find the follow

Find the following values:

- (a) $\log_3 9;$
- **b** $\log_2 \frac{1}{2}$;
- $\bigcirc 2^{\log_2 100}.$

▲御▶ ▲臣▶ ▲臣▶ -

3

Example: logarithms

Example

Find the following values:

log₃ 9;
 log₂ ¹/₂;

 $\bigcirc 2^{\log_2 100}.$

Solution

(a) Since $3^2 = 9$, $\log_3 9 = 2$.

(日本) (日本) (日本)

Example: logarithms

Example

Find the following values:

- log₃ 9;
 log₂ ¹/₂;
- $\bigcirc 2^{\log_2 100}.$

Solution

(a) Since
$$3^2 = 9$$
, $\log_3 9 = 2$.
(b) Since $2^1 = 2$, we have that $2^{-1} = \frac{1}{2}$. So $\log_2 \frac{1}{2} = -1$

・四ト・モート・モート

Example: logarithms

Example

Find the following values:

- log₃ 9;
 log₂ ¹/₂;
- $2^{\log_2 100}$.

Solution

(a) Since
$$3^2 = 9$$
, $\log_3 9 = 2$.
(b) Since $2^1 = 2$, we have that $2^{-1} = \frac{1}{2}$. So $\log_2 \frac{1}{2} = -1$.
(c) By definition, $\log_2 100$ is a real number y such that $2^y = 100$.
Hence $2^{\log_2 100} = 100$.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

HW# 9 of this section

Section 7.1 Exercise 2, 4(c), 7(b)(d), 10(d)(e), 25(b), 28, 42.

(日本) (日本) (日本)