
Definitions
Properties of functions
Examples of functions

Math 325K - Lecture 17
Section 7.1 Functions defined on general sets

Bo Lin

October 30th, 2018

Bo Lin Math 325K - Lecture 17 Section 7.1 Functions defined on general sets



Definitions
Properties of functions
Examples of functions

Outline

Definitions.

Properties of functions.

Examples of functions.

Bo Lin Math 325K - Lecture 17 Section 7.1 Functions defined on general sets



Definitions
Properties of functions
Examples of functions

Definition of functions

Recall the definition of functions in Chapter 1:

Definition

A function f from a set X to a set Y , denoted f : X → Y , is a
relation from the domain X to the co-domain Y such that every
element in X is related to a unique element in Y . If we call this
element y, then we say that ”f sends x to y” or ”f maps x to y”,

and write x
f→ y or f : x→ y. The unique element to which f

sends x is denoted f(x) and called ”f of x” or ”the value of f at
x”.
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Range and preimage

Definition

For a function f : X → Y , the range of f is the set

{y ∈ Y | y = f(x) for some x ∈ X}.

Definition

For a function f : X → Y and any y ∈ Y , the preimage of y,
denoted f−1(y), is the set

{x ∈ X | f(x) = y}.
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Functions acting on sets

Definition

If f : X → Y is a function and A ⊆ X and C ⊆ Y , then

f(A) = {y ∈ Y | y = f(x) for some x ∈ A}.

and
f−1(C) = {x ∈ X | f(x) ∈ C}

f(A) is called the image of A, and f−1(C) is called the inverse
image of C.
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The arrow diagrams

The arrow diagram is a type of figures that define functions.

X Y
f−→

x1
x2
x3
x4

y1
y2
y3
y4
y5

In this example, f(x1) = y2, f(x2) = f(x4) = y4, f(x3) = y1.
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Example: arrow diagram

Example

Which of the following arrow diagrams correspond to a function?

(A)

X Y

x1
x2
x3

y1
y2
y3
y4

(B)

X Y

x1
x2
x3

y1
y2
y3
y4

(C)

X Y

x1
x2
x3

y1
y2
y3
y4

Bo Lin Math 325K - Lecture 17 Section 7.1 Functions defined on general sets



Definitions
Properties of functions
Examples of functions

Example: arrow diagram

Solution

(A) does not correspond a function because x1 ∈ X is related to 2
different element s in Y .

(B) does not correspond a function because x3 ∈ X is not related
to any element in Y .
(C) corresponds to a function from X to Y .
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Example: read information from arrow diagrams

Example

Let X = {a, b, c} and Y = {1, 2, 3, 4}. Consider the function
f : X → Y given by the following arrow diagram.

(a) What is f(b)?

(b) What is the range of f?

(c) What is f−1(2)?

(d) What is f−1(1)?

(e) What is f ({a, c})?

X Y
f−→

a
b
c

1
2
3
4
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Example: read information from arrow diagrams

Solution

(a) f(b) = 4.

(b) The range of f is {2, 4}.
(c) f−1(2) = {a, c}.
(d) f−1(1) = ∅.
(e) f ({a, c}) = {f(a), f(c)} = {2}.
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When two functions are equal

Definition

Two functions f and g are equal if and only if:

they have the same domain D;

for any x ∈ D, f(x) = g(x).

Remark

By definition, equal functions may have different co-domains.
However, they must have the same range.

Bo Lin Math 325K - Lecture 17 Section 7.1 Functions defined on general sets



Definitions
Properties of functions
Examples of functions

When two functions are equal

Definition

Two functions f and g are equal if and only if:

they have the same domain D;

for any x ∈ D, f(x) = g(x).

Remark

By definition, equal functions may have different co-domains.
However, they must have the same range.

Bo Lin Math 325K - Lecture 17 Section 7.1 Functions defined on general sets



Definitions
Properties of functions
Examples of functions

Example: equal functions

Example

Are the following pairs of functions f and g equal?

(a) f : R→ R with f(x) = x for all x ∈ R; g : R→ R with
g(x) =

√
x2 for all x ∈ R.

(b) f : R→ R with f(x) = |x| for all x ∈ R; g : R→ R with
g(x) =

√
x2 for all x ∈ R.

(c) f : Z→ Z with f(n) = n mod 2 for all n ∈ Z; g : Z→ {0, 1}
with

g(n) =

{
0, if n is even;

1, if n is odd.

for all n ∈ Z.

Bo Lin Math 325K - Lecture 17 Section 7.1 Functions defined on general sets



Definitions
Properties of functions
Examples of functions

Example: equal functions

Solution

(a) f(−1) = −1 while g(−1) =
√

(−1)2 =
√
1 = 1, so f 6= g.

(b) Note that for all x ∈ R, we have that
√
x2 = |x|, so f = g.

(c) f and g have the same domain and the same value for every
element in the domain Z, so f = g.
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Whether a function is well-defined

When we define a function, we need to make sure that each
element in the domain is indeed mapped to a unique element in
the co-domain.

Consider the following relation F between Q and Z such that for
all m

n ∈ Q with m,n ∈ Z, we let
(
m
n ,m

)
∈ F . Is F a function?

The answer is ”no”. For the element ”one half” in Q, it could be
expressed as 1

2 . By definition
(
1
2 , 1
)
∈ F . in addition, one half is

also equal to 2
4 , so

(
1
2 , 2
)
∈ F . But any element in the domain of a

function cannot be mapped to more than one element in the
co-domain, so F is not a function.
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Example: well-defined function

Example

Let F : Q+ → Z such that for any m
n ∈ Q+ with m,n ∈ N, we

have that F
(
m
n

)
= m div n. Is this F a well-defined function?

Solution

Note that m = n · (m div n) +m mod n. Since 0 ≤ m mod n < n, we
have that

n · (m div n) ≤ m < n · (m div n+ 1) .

Hence
m div n ≤ m/n < (m div n) + 1.

It turns out that m div n is always the largest integer not exceeding m
n ,

so for different choices of m,n for the same positive rational number, we
get the same value of F . So F is a well-defined function.
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Sequences

Sequences could be viewed as functions defined on a subset of Z:
it is a function that maps n to an.
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Power set

Recall that for any set A, P(A) is the power set of A. The
following function F has domain P(A): for each X ∈P(A),
F (X) = |X|, the cardinality of X.
Suppose |A| = n ∈ N, what would be the range of F?

Solution

The cardinality of X ∈P(A) is at least 0 and at most n. In
addition, for any integer i between 0 and n, there exists some
subset of A whose cardinality is i. Hence the range is

{0, 1, . . . , n}.
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Logarithms

Definition

Let b be a positive real number with b 6= 1. For each positive real
number x, the logarithm with base b of x, written logb x, is the
exponent to which b must be raised to obtain x. Symbolically,

logb x = y ⇔ by = x.

The logarithmic function with base b is the function from R+ to
R that takes each positive real number x to logb x.

Remark

Why do we require b 6= 1? Because the power of 1 is always 1, so
it cannot be a general x.
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Example: logarithms

Example

Find the following values:

(a) log3 9;

(b) log2
1
2 ;

(c) 2log2 100.

Solution

(a) Since 32 = 9, log3 9 = 2.
(b) Since 21 = 2, we have that 2−1 = 1

2 . So log2
1
2 = −1.

(c) By definition, log2 100 is a real number y such that 2y = 100.
Hence 2log2 100 = 100.
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HW# 9 of this section

Section 7.1 Exercise 2, 4(c), 7(b)(d),
10(d)(e), 25(b), 28, 42.
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