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Problem-solving strategy: guess the answer, prove by
induction

In many cases, we don’t know the answer of a sum. However, if we
figure it out, it is usually trivial to prove it by induction.

Example

Let n be a positive integer. For positive integer k, k! is the
factorial of k, which is

∏k
i=1 i. Evaluate the following sum:

n∑
k=1

(k · k!).

Hint

The first few terms in the sequence: 1, 4, 18, 96. And the
corresponding sums for small n: 1, 5, 23, 119. Any pattern?
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Problem-solving strategy: guess the answer, prove by
induction

Solution

We claim that the sum is (n+ 1)!− 1, and we use induction to
prove it. When n = 1, the sum is 1 and (1 + 1)!− 1 = 2− 1 = 1.
As for the inductive step, suppose m is an arbitrary positive integer
such that

∑m
k=1 k · k! = (m+ 1)!− 1. Then

m+1∑
k=1

k · k! =
m∑
k=1

k · k! + (m+ 1) · (m+ 1)!

= [(m+ 1)!− 1] + (m+ 1) · (m+ 1)!

=(m+ 2) · (m+ 1)!− 1 = (m+ 2)!− 1.

So the claim is still true when n = m+ 1. We are done.

Bo Lin Math 2603 - Lecture 10 Section 5.2 & 5.3 Recursively defined sequences



From Lecture 9
Recursively defined sequences

Some special sequences
The characteristic polynomial

Example: a flawed proof using induction

Example

Here is a ”proof” of the false statement ”for all integers n ≥ 1,
3n − 2 is even.”

Proof.

Suppose the statement is true for an arbitrary integer k ≥ 1. Then
3k − 2 is even. We must show that 3k+1 − 2 is even. But

3k+1 − 2 = 3k · 3− 2 = (3k − 2) + 2 · 3k.

Now 3k − 2 is even by inductive hypothesis and 2 · 3k is even by
definition. Hence their sum is also even. It follows that 3k+1 − 2 is
even, which is what we needed to show.

What is the flaw?
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Induction makes no sense without basis step

Solution

All steps in the ”proof” are correct, but it misses the basis step
and in fact the basis step is apparently false.

Remark

Although the inductive step is usually the essential step in a proof
by induction, please note that it is only an implication! So if the
premise is false, it is an invalid argument and it is useless. As a
result, it is vital to make sure that the basis step is done correctly.
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Example: a hidden flaw

Example

Here is a ”proof” of the false statement ”for all nonzero real
numbers r and nonnegative integer n, rn = 1.”

Proof.

Fix r, we use strong induction on n. Basis step: when n = 0, since
r 6= 0, r0 = 1 is true.
Inductive step: suppose k ≥ 0 is an arbitrary integer such that
ri = 1 for all 0 ≤ i ≤ k. Note that
rk+1 = rk+k−(k−1) = rk · rk/rk−1. By the inductive hypothesis,
rk = rk−1 = 1, so rk+1 is also 1. The inductive step is done.

What is the flaw?
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Mind the range of numbers that the hypothesis applies to

Solution

The basis step is absolutely correct. In the inductive step, the
formulas are correct. The flaw is that when k = 0, k − 1 = −1,
which is no longer between 0 and k! So in this particular case we
don’t have rk−1 = 1!

Remark

In this flawed proof, we can see that if we already have that the
claim is true for k = 0, 1, then the proof works. But this is
expected - when k = 1, the claim becomes r = 1, and if r = 1, the
statement would be true. Otherwise, it’s false.
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Sequences

Definition

A sequence {an} is a function f whose domain is an infinite set
of integers (often N) and whose range is a subset of R. For integer
m in the domain, we usually write am for the value of f(m).

Example

f : N→ R with f(n) = n2 is the sequence 1, 4, 9, 16, · · · .
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Recurrence relation

Definition

A recurrence relation for a sequence a0, a1, a2, · · · is a formula
that relates each term ak to certain of its predecessors
ak−1, ak−2, ..., ak−i, where i is an integer such that k − i ≥ 0. The
initial conditions for such a recurrence relation specify the values of
a0, a1, a2, · · · , am−1, where m is i or some other positive integer.
The sequence {an} is also called recursively defined.

Remark

i is usually 1 or 2. The way we define a recurrence relation is very
similar to the strong form of mathematical induction.
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Example of recurrence relation

Example

The sequence an = 2n ∀ n ∈ N has an alternative description:

a1 = 2, ak+1 = 2 · ak ∀ k ∈ N.

Remark

Given a recursively defined sequence, it may not be easy to find a
direct formula for an with general n.
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Examples of special sequences

Arithmetic progression;

Geometric progression;

Fibonacci sequence.
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Arithmetic progressions

Definition

An arithmetic progression is a sequence in which the difference
of any two consecutive terms is a constant. In other words, it is a
sequence of the form a, a+ d, a+ 2d, . . ., where a ∈ R is called the
initial term and d ∈ R is called the common difference.

Remark

Alternatively, it is recursively defined as an+1 = an + d. The
common difference d may be zero.
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Example: sum of terms in an arithmetic progression

Example

(1) Evaluate
∑100

k=1 k.

(2) Show that
∑n

k=1 k = n(n+1)
2 for all positive integers n.

Solution

(1) We can pair up integers from 1 to 100:
1 + 100 = 101, 2 + 99 = 101, · · · . There are 100/2 = 50 pairs in
total, and the sum of each pair is 101, so the total sum is
101 · 50 = 5050.

Remark

As a prodigy, German mathematician Carl Friedrich Gauss
(1777-1855) managed to apply this method when he was a young
boy.
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Example: sum of terms in an arithmetic progression

Solution

(2) We use induction on n. When n = 1, the claim becomes
1 = 1·2

2 , which is trivially true.

For the inductive step, suppose m
is an arbitrary positive integer such that the claim is true when
n = m, then

∑m
k=1 k = m(m+1)

2 . Now we consider the case when
n = m+ 1. We have

m+1∑
k=1

k =

m∑
k=1

k + (m+ 1)

=
m(m+ 1)

2
+ (m+ 1) = (m+ 1)(

m

2
+ 1) =

(m+ 1)(m+ 2)

2
.

So the claim is still true when n = m+ 1.
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Sum of terms in general arithmetic progressions

Theorem

For positive integer n and real number d, we have:

n−1∑
k=0

(a+ kd) = na+
n(n− 1)

2
d.

We can prove this theorem in both ways: pairs or induction.
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Geometric progressions

Definition

An geometric progression is a sequence in which the ratio of any
two consecutive terms is a constant. In other words, it is a
sequence of the form a, ar, ar2, . . ., where a ∈ R− {0} is called
the initial term and r ∈ R− {0} is called the common ratio.

Remark

Be careful that the common ratio cannot be zero! As a corollary,
all terms in a geometric progression may not be zero.
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Sum of terms in general geometric progressions

Theorem

For positive integer n and real number r 6= 0, we have:

n−1∑
k=0

ark =

{
na, if r = 1;

a rn−1
r−1 , if r 6= 1.

Proof.

The case when r = 1 is simple: ark = a for all k, so the sum
equals to na. Now we assume that r 6= 1. Let S be the sum. Then
rS =

∑n−1
k=0 ar

k+1 =
∑n

k=1 ar
k. So

rS − S = arn − a,

S = a
rn − 1

r − 1
.
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Example: sum of terms in a geometric progression

Example

Evaluate the following sum of terms in a geometric sequence:

8∑
k=0

2k.

Solution

Here we have a geometric sequence with 9 terms. The initial term
is 20 = 1 and the common ratio is 2. By the theorem, the answer is

a
rn − 1

r − 1
= 1 · 2

9 − 1

2− 1
= 512− 1 = 511.
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Fibonacci sequence

Leonardo Fibonacci (1180-1228) was a prominent Italian
mathematician. He considered the rapid reproduction of rabbit
species and introduced the following sequence:

Definition

The Fibonacci sequence Fn is defined as follows:

F0 = 0, F1 = 1;

Fn = Fn−1 + Fn−2 for all integers n ≥ 2.

The terms Fn are called Fibonacci numbers.

Remark

Fibonacci numbers have a lot of properties, and itself even became
a small branch of mathematical research (there is even a research
journal Fibonacci Quarterly).
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How to find Fn

Remark

The first few terms of {Fn} are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, · · ·

Remark

We can easily prove that {Fn} is increasing, but it is neither
arithmetic nor geometric, so how to find a formula for Fn?
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Example: first-order recurrence relation

Definition

A recurrence relation is called first order if i = 1. In other words,
the term ak only depends on the value ak−1.

Example

Let a1 = 1 and ak+1 = 2ak + 1 for k ∈ N. Find the value of an.
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Solution to first-order: make it geometric!

Remark

The first few terms are 1, 3, 7, 15, 31, · · ·

Each term is
approximately twice as the previous term. So our sequence seems
not very far from a geometric progression with common ratio 2.

Hint

It would be prefect if we don’t have the 1 in the recurrence
relation. What if we shift all terms by the same number c?

ak+1 + c = 2(ak + c).

If this holds, then ak+1 = 2(ak + c)− c = 2ak + c, so c must be 1.
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Solution to example

Solution

Let bn = an + 1 for all n ∈ N. Then b1 = 2 and bk+1 = 2bk for all
k ∈ N.

So {bn} is a geometric progression with common ratio
r = 2. Thus bn = b1 · 2n−1 = 2n. Finally

an = bn − 1 = 2n − 1.

Remark

For first-order recurrence relations, we usually modify the sequence
such that the new sequence is geometric and we can easily find.
Then we recover the original sequence. This is a special case of the
general method - characteristic polynomial.
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Then we recover the original sequence. This is a special case of the
general method - characteristic polynomial.
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Solving Fibonacci sequence

Remark

Note that in {Fn}, the value of each term depends on previous 2
terms. So it is of second-order. Is it still possible that {Fn} is
very similar to a geometric progression?

Hint

Suppose there is a, r 6= 0 such that Fn = a · rn, then what
property should a and r satisfy?

a · rn+2 = a · rn+1 + a · rn.

Divided by nonzero a · rn, we get

r2 = r + 1.
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Solving Fibonacci sequence

Now we know that if a real number r satisfies r2 = r + 1, then
Fn = a · rn satisfies the recurrence relation, all we need to fix is
the values of the initial terms.

The quadratic equation x2 − x− 1 = 0 has 2 real roots 1±
√
5

2 , and
it turns out that the Fibonacci numbers are a linear combination of
these two:

Theorem

Fn =
1√
5

[(
1 +
√
5

2

)n

−

(
1−
√
5

2

)n]
∀n ∈ Z, n ≥ 0.
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The characteristic polynomial

Definition

If the recurrence relation is ak+2 = rak+1 + sak where r, s ∈ R, its
characteristic polynomial is x2 − rx− s.

Theorem

Let x1 and x2 be the roots of the polynomial x2− rx− s. Then the
solution of the recurrence relation an = ran−1 + san−2, n ≥ 2 is

an =

{
c1x

n
1 + c2x

n
2 , if x1 6= x2;

c1x
n + c2nx

n, if x1 = x2 = x.
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Example

Solve the recurrence relation an = 5an−1 − 6an−2 for n ≥ 2 and
a0 = −3, a1 = −2.

Hint

By the theorem above, we solve the characteristic polynomial and
know the general form of solutions, with constants c1, c2 to be
determined. The two initial terms would establish two linear
equations for c1, c2, which leads to a unique solution. For more
details, see Section 5.3 Exercise 25 in Homework.
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Example: second-order recurrence relation

Solution

Here r = 5, s = −6. The characteristic polynomial is
x2 − 5x+ 6 = (x− 2)(x− 3). So the roots are 2 and 3.

We may
write the solution as

an = c12
n + c23

n.

Note that this is also true when n = 0, 1. We then plug-in n = 0, 1:

−3 = a0 = c12
0 + c23

0 = c1 + c2

−2 = a1 = c12
1 + c23

1 = 2c1 + 3c2.

Finally, we solve for c1, c2.
c2 = (2c1 + 3c2)− 2(c1 + c2) = −2− 2 · (−3) = 4. And
c1 = −3− c2 = −7. The solution is an = (−7) · 2n + 4 · 3n.
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HW Assignment #5 - today’s sections

Section 5.2 Exercise 5, 6, 33(c)(d),
48, 51.
Section 5.3 Exercise 2, 11, 25.
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