## Math 2603 - Lecture 10 Section 5.2 & 5.3 Recursively defined sequences

Bo Lin

## September 19th, 2019

Bo Lin Math 2603 - Lecture 10 Section 5.2 & 5.3 Recursively defined se

・ 同 ト ・ ヨ ト ・ ヨ

## Problem-solving strategy: guess the answer, prove by induction

In many cases, we don't know the answer of a sum. However, if we figure it out, it is usually trivial to prove it by induction.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

# Problem-solving strategy: guess the answer, prove by induction

In many cases, we don't know the answer of a sum. However, if we figure it out, it is usually trivial to prove it by induction.

### Example

Let n be a positive integer. For positive integer k, k! is the factorial of k, which is  $\prod_{i=1}^{k} i$ . Evaluate the following sum:

$$\sum_{k=1}^{n} \left( k \cdot k! \right).$$

# Problem-solving strategy: guess the answer, prove by induction

In many cases, we don't know the answer of a sum. However, if we figure it out, it is usually trivial to prove it by induction.

## Example

Let n be a positive integer. For positive integer k, k! is the factorial of k, which is  $\prod_{i=1}^{k} i$ . Evaluate the following sum:

$$\sum_{k=1}^{n} (k \cdot k!).$$

#### Hint

The first few terms in the sequence: 1, 4, 18, 96. And the corresponding sums for small n: 1, 5, 23, 119. Any pattern?

## Problem-solving strategy: guess the answer, prove by induction

#### Solution

We claim that the sum is (n + 1)! - 1, and we use induction to prove it. When n = 1, the sum is 1 and (1 + 1)! - 1 = 2 - 1 = 1. As for the inductive step, suppose m is an arbitrary positive integer such that  $\sum_{k=1}^{m} k \cdot k! = (m + 1)! - 1$ . Then

$$\sum_{k=1}^{m+1} k \cdot k! = \sum_{k=1}^{m} k \cdot k! + (m+1) \cdot (m+1)!$$
$$= [(m+1)! - 1] + (m+1) \cdot (m+1)!$$
$$= (m+2) \cdot (m+1)! - 1 = (m+2)! - 1.$$

So the claim is still true when n = m + 1. We are done.

## Example: a flawed proof using induction

#### Example

Here is a "proof" of the false statement "for all integers  $n\geq 1,$   $3^n-2$  is even."

### Proof.

Suppose the statement is true for an arbitrary integer  $k \ge 1$ . Then  $3^k - 2$  is even. We must show that  $3^{k+1} - 2$  is even. But

$$3^{k+1} - 2 = 3^k \cdot 3 - 2 = (3^k - 2) + 2 \cdot 3^k.$$

Now  $3^k - 2$  is even by inductive hypothesis and  $2 \cdot 3^k$  is even by definition. Hence their sum is also even. It follows that  $3^{k+1} - 2$  is even, which is what we needed to show.

What is the flaw?

## Induction makes no sense without basis step

## Solution

All steps in the "proof" are correct, but it misses the basis step and in fact the basis step is apparently false.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

## Induction makes no sense without basis step

## Solution

All steps in the "proof" are correct, but it misses the basis step and in fact the basis step is apparently false.

#### Remark

Although the inductive step is usually the essential step in a proof by induction, please note that it is only an implication! So if the premise is false, it is an invalid argument and it is useless. As a result, it is vital to make sure that the basis step is done correctly.

## Example: a hidden flaw

#### Example

Here is a "proof" of the false statement "for all nonzero real numbers r and nonnegative integer n,  $r^n = 1$ ."

#### Proof.

Fix r, we use strong induction on n. Basis step: when n = 0, since  $r \neq 0$ ,  $r^0 = 1$  is true. Inductive step: suppose  $k \ge 0$  is an arbitrary integer such that  $r^i = 1$  for all  $0 \le i \le k$ . Note that  $r^{k+1} = r^{k+k-(k-1)} = r^k \cdot r^k/r^{k-1}$ . By the inductive hypothesis,  $r^k = r^{k-1} = 1$ , so  $r^{k+1}$  is also 1. The inductive step is done.  $\Box$ 

What is the flaw?

## Mind the range of numbers that the hypothesis applies to

#### Solution

The basis step is absolutely correct. In the inductive step, the formulas are correct. The flaw is that when k = 0, k - 1 = -1, which is no longer between 0 and k! So in this particular case we don't have  $r^{k-1} = 1!$ 

## Mind the range of numbers that the hypothesis applies to

#### Solution

The basis step is absolutely correct. In the inductive step, the formulas are correct. The flaw is that when k = 0, k - 1 = -1, which is no longer between 0 and k! So in this particular case we don't have  $r^{k-1} = 1!$ 

#### Remark

In this flawed proof, we can see that if we already have that the claim is true for k = 0, 1, then the proof works. But this is expected - when k = 1, the claim becomes r = 1, and if r = 1, the statement would be true. Otherwise, it's false.

## Recursively defined sequences

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

## Sequences

## Definition

A sequence  $\{a_n\}$  is a function f whose domain is an infinite set of integers (often  $\mathbb{N}$ ) and whose range is a subset of  $\mathbb{R}$ . For integer m in the domain, we usually write  $a_m$  for the value of f(m).

## Sequences

## Definition

A sequence  $\{a_n\}$  is a function f whose domain is an infinite set of integers (often  $\mathbb{N}$ ) and whose range is a subset of  $\mathbb{R}$ . For integer m in the domain, we usually write  $a_m$  for the value of f(m).

#### Example

$$f:\mathbb{N}
ightarrow\mathbb{R}$$
 with  $f(n)=n^2$  is the sequence  $1,4,9,16,\cdots$ 

## Recurrence relation

#### Definition

A recurrence relation for a sequence  $a_0, a_1, a_2, \cdots$  is a formula that relates each term  $a_k$  to certain of its predecessors  $a_{k-1}, a_{k-2}, \ldots, a_{k-i}$ , where *i* is an integer such that  $k - i \ge 0$ . The initial conditions for such a recurrence relation specify the values of  $a_0, a_1, a_2, \cdots, a_{m-1}$ , where *m* is *i* or some other positive integer. The sequence  $\{a_n\}$  is also called recursively defined.

## Recurrence relation

### Definition

A recurrence relation for a sequence  $a_0, a_1, a_2, \cdots$  is a formula that relates each term  $a_k$  to certain of its predecessors  $a_{k-1}, a_{k-2}, \ldots, a_{k-i}$ , where *i* is an integer such that  $k - i \ge 0$ . The initial conditions for such a recurrence relation specify the values of  $a_0, a_1, a_2, \cdots, a_{m-1}$ , where *m* is *i* or some other positive integer. The sequence  $\{a_n\}$  is also called recursively defined.

#### Remark

i is usually 1 or 2. The way we define a recurrence relation is very similar to the strong form of mathematical induction.

くロ と く 同 と く ヨ と 一

## Example of recurrence relation

#### Example

The sequence  $a_n = 2^n \forall n \in \mathbb{N}$  has an alternative description:

< ロ > < 同 > < 三 > < 三 > <

э

## Example of recurrence relation

#### Example

The sequence  $a_n = 2^n \forall n \in \mathbb{N}$  has an alternative description:

$$a_1 = 2, a_{k+1} = 2 \cdot a_k \ \forall \ k \in \mathbb{N}.$$

< ロ > < 同 > < 三 > < 三 > <

э

## Example of recurrence relation

#### Example

The sequence  $a_n = 2^n \forall n \in \mathbb{N}$  has an alternative description:

$$a_1 = 2, a_{k+1} = 2 \cdot a_k \,\forall \, k \in \mathbb{N}.$$

#### Remark

Given a recursively defined sequence, it may not be easy to find a direct formula for  $a_n$  with general n.

## Some special sequences

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

## Examples of special sequences

- Arithmetic progression;
- Geometric progression;
- Fibonacci sequence.

→ < Ξ → <</p>

## Arithmetic progressions

## Definition

An arithmetic progression is a sequence in which the difference of any two consecutive terms is a constant. In other words, it is a sequence of the form a, a + d, a + 2d, ..., where  $a \in \mathbb{R}$  is called the initial term and  $d \in \mathbb{R}$  is called the common difference.

## Arithmetic progressions

## Definition

An arithmetic progression is a sequence in which the difference of any two consecutive terms is a constant. In other words, it is a sequence of the form a, a + d, a + 2d, ..., where  $a \in \mathbb{R}$  is called the initial term and  $d \in \mathbb{R}$  is called the common difference.

#### Remark

Alternatively, it is recursively defined as  $a_{n+1} = a_n + d$ . The common difference d may be zero.

・ロト ・四ト ・ヨト ・ヨト

## Example: sum of terms in an arithmetic progression

## Example

(1) Evaluate 
$$\sum_{k=1}^{100} k$$
.  
(2) Show that  $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$  for all positive integers  $n$ .

## Example: sum of terms in an arithmetic progression

#### Example

(1) Evaluate 
$$\sum_{k=1}^{100} k$$
.  
(2) Show that  $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$  for all positive integers  $n$ .

### Solution

(1) We can pair up integers from 1 to 100:  $1 + 100 = 101, 2 + 99 = 101, \cdots$ . There are 100/2 = 50 pairs in total, and the sum of each pair is 101, so the total sum is  $101 \cdot 50 = 5050.$ 

くロ と く 同 と く ヨ と 一

## Example: sum of terms in an arithmetic progression

## Example

(1) Evaluate 
$$\sum_{k=1}^{100} k$$
.  
(2) Show that  $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$  for all positive integers  $n$ .

## Solution

(1) We can pair up integers from 1 to 100:  $1 + 100 = 101, 2 + 99 = 101, \cdots$ . There are 100/2 = 50 pairs in total, and the sum of each pair is 101, so the total sum is  $101 \cdot 50 = 5050.$ 

#### Remark

As a prodigy, German mathematician Carl Friedrich Gauss (1777-1855) managed to apply this method when he was a young boy.

## Example: sum of terms in an arithmetic progression

## Solution

(2) We use induction on n. When n = 1, the claim becomes  $1 = \frac{1 \cdot 2}{2}$ , which is trivially true.

イロト イボト イヨト イヨト

## Example: sum of terms in an arithmetic progression

## Solution

(2) We use induction on n. When n = 1, the claim becomes  $1 = \frac{1 \cdot 2}{2}$ , which is trivially true. For the inductive step, suppose m is an arbitrary positive integer such that the claim is true when n = m, then  $\sum_{k=1}^{m} k = \frac{m(m+1)}{2}$ . Now we consider the case when n = m + 1.

イロト イボト イヨト イヨト

## Example: sum of terms in an arithmetic progression

## Solution

(2) We use induction on n. When n = 1, the claim becomes  $1 = \frac{1 \cdot 2}{2}$ , which is trivially true. For the inductive step, suppose m is an arbitrary positive integer such that the claim is true when n = m, then  $\sum_{k=1}^{m} k = \frac{m(m+1)}{2}$ . Now we consider the case when n = m + 1. We have

$$\sum_{k=1}^{m+1} k = \sum_{k=1}^{m} k + (m+1)$$
$$= \frac{m(m+1)}{2} + (m+1) = (m+1)(\frac{m}{2}+1) = \frac{(m+1)(m+2)}{2}.$$

So the claim is still true when n = m + 1.

## Sum of terms in general arithmetic progressions

#### Theorem

For positive integer n and real number d, we have:

$$\sum_{k=0}^{n-1} (a+kd) = na + \frac{n(n-1)}{2}d.$$

We can prove this theorem in both ways: pairs or induction.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

## Geometric progressions

## Definition

An geometric progression is a sequence in which the ratio of any two consecutive terms is a constant. In other words, it is a sequence of the form  $a, ar, ar^2, \ldots$ , where  $a \in \mathbb{R} - \{0\}$  is called the initial term and  $r \in \mathbb{R} - \{0\}$  is called the common ratio.

## Geometric progressions

## Definition

An geometric progression is a sequence in which the ratio of any two consecutive terms is a constant. In other words, it is a sequence of the form  $a, ar, ar^2, \ldots$ , where  $a \in \mathbb{R} - \{0\}$  is called the initial term and  $r \in \mathbb{R} - \{0\}$  is called the common ratio.

#### Remark

Be careful that the common ratio cannot be zero! As a corollary, all terms in a geometric progression may not be zero.

## Sum of terms in general geometric progressions

#### Theorem

For positive integer n and real number  $r \neq 0$ , we have:

$$\sum_{k=0}^{n-1} ar^k = \begin{cases} na, & \text{if } r = 1; \\ a\frac{r^n - 1}{r - 1}, & \text{if } r \neq 1. \end{cases}$$

- 4 同 1 4 三 1 4 三 1

## Sum of terms in general geometric progressions

#### Theorem

For positive integer n and real number  $r \neq 0$ , we have:

$$\sum_{k=0}^{n-1} ar^k = \begin{cases} na, & \text{if } r = 1; \\ a\frac{r^n - 1}{r - 1}, & \text{if } r \neq 1. \end{cases}$$

#### Proof.

The case when r = 1 is simple:  $ar^k = a$  for all k, so the sum equals to na. Now we assume that  $r \neq 1$ . Let S be the sum. Then  $rS = \sum_{k=0}^{n-1} ar^{k+1} = \sum_{k=1}^{n} ar^k$ . So

$$rS - S = ar^{n} - a,$$
$$S = a\frac{r^{n} - 1}{r - 1}.$$

Bo Lin

Math 2603 - Lecture 10 Section 5.2 & 5.3 Recursively defined se

## Example: sum of terms in a geometric progression

## Example

Evaluate the following sum of terms in a geometric sequence:



## Example: sum of terms in a geometric progression

#### Example

Evaluate the following sum of terms in a geometric sequence:



## Solution

Here we have a geometric sequence with 9 terms. The initial term is  $2^0 = 1$  and the common ratio is 2. By the theorem, the answer is

$$a\frac{r^n-1}{r-1} = 1 \cdot \frac{2^9-1}{2-1} = 512 - 1 = 511.$$

イロト イヨト イヨト イヨ

# Fibonacci sequence

Leonardo Fibonacci (1180-1228) was a prominent Italian mathematician. He considered the rapid reproduction of rabbit species and introduced the following sequence:

#### Definition

The Fibonacci sequence  $F_n$  is defined as follows:

• 
$$F_0 = 0, F_1 = 1;$$

• 
$$F_n = F_{n-1} + F_{n-2}$$
 for all integers  $n \ge 2$ .

The terms  $F_n$  are called **Fibonacci numbers**.

< ロ > < 同 > < 三 > < 三 >

# Fibonacci sequence

Leonardo Fibonacci (1180-1228) was a prominent Italian mathematician. He considered the rapid reproduction of rabbit species and introduced the following sequence:

#### Definition

The Fibonacci sequence  $F_n$  is defined as follows:

• 
$$F_0 = 0, F_1 = 1;$$

• 
$$F_n = F_{n-1} + F_{n-2}$$
 for all integers  $n \ge 2$ .

The terms  $F_n$  are called **Fibonacci numbers**.

#### Remark

Fibonacci numbers have a lot of properties, and itself even became a small branch of mathematical research (there is even a research journal Fibonacci Quarterly).

# How to find $F_n$

#### Remark

The first few terms of  $\{F_n\}$  are

 $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots$ 

Bo Lin Math 2603 - Lecture 10 Section 5.2 & 5.3 Recursively defined se

米部 とくほとくほど

э

# How to find $F_n$

#### Remark

The first few terms of  $\{F_n\}$  are

 $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots$ 

#### Remark

We can easily prove that  $\{F_n\}$  is increasing, but it is neither arithmetic nor geometric, so how to find a formula for  $F_n$ ?

・ 同 ト ・ ヨ ト ・ ヨ ト

# The characteristic polynomial

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

### Example: first-order recurrence relation

#### Definition

A recurrence relation is called **first order** if i = 1. In other words, the term  $a_k$  only depends on the value  $a_{k-1}$ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

### Example: first-order recurrence relation

#### Definition

A recurrence relation is called **first order** if i = 1. In other words, the term  $a_k$  only depends on the value  $a_{k-1}$ .

#### Example

Let  $a_1 = 1$  and  $a_{k+1} = 2a_k + 1$  for  $k \in \mathbb{N}$ . Find the value of  $a_n$ .

< ロ > < 同 > < 三 > < 三 >

# Solution to first-order: make it geometric!

Remark

The first few terms are  $1, 3, 7, 15, 31, \cdots$ 

Bo Lin Math 2603 - Lecture 10 Section 5.2 & 5.3 Recursively defined se

• • = • • = •

# Solution to first-order: make it geometric!

#### Remark

The first few terms are  $1, 3, 7, 15, 31, \cdots$  Each term is approximately twice as the previous term. So our sequence seems not very far from a geometric progression with common ratio 2.

《口》《聞》《臣》《臣》

# Solution to first-order: make it geometric!

#### Remark

The first few terms are  $1, 3, 7, 15, 31, \cdots$  Each term is approximately twice as the previous term. So our sequence seems not very far from a geometric progression with common ratio 2.

#### Hint

It would be prefect if we don't have the 1 in the recurrence relation. What if we shift all terms by the same number c?

$$a_{k+1} + c = 2(a_k + c).$$

< ロ > < 同 > < 三 > < 三

# Solution to first-order: make it geometric!

#### Remark

The first few terms are  $1, 3, 7, 15, 31, \cdots$  Each term is approximately twice as the previous term. So our sequence seems not very far from a geometric progression with common ratio 2.

#### Hint

It would be prefect if we don't have the 1 in the recurrence relation. What if we shift all terms by the same number c?

$$a_{k+1} + c = 2(a_k + c).$$

If this holds, then  $a_{k+1} = 2(a_k + c) - c = 2a_k + c$ , so c must be 1.

< ロ > < 同 > < 三 > < 三 >

# Solution to example

#### Solution

Let  $b_n = a_n + 1$  for all  $n \in \mathbb{N}$ . Then  $b_1 = 2$  and  $b_{k+1} = 2b_k$  for all  $k \in \mathbb{N}$ .

イロト イポト イヨト イヨト

3

### Solution to example

#### Solution

Let  $b_n = a_n + 1$  for all  $n \in \mathbb{N}$ . Then  $b_1 = 2$  and  $b_{k+1} = 2b_k$  for all  $k \in \mathbb{N}$ . So  $\{b_n\}$  is a geometric progression with common ratio r = 2. Thus  $b_n = b_1 \cdot 2^{n-1} = 2^n$ . Finally

$$a_n = b_n - 1 = 2^n - 1.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Solution to example

#### Solution

Let  $b_n = a_n + 1$  for all  $n \in \mathbb{N}$ . Then  $b_1 = 2$  and  $b_{k+1} = 2b_k$  for all  $k \in \mathbb{N}$ . So  $\{b_n\}$  is a geometric progression with common ratio r = 2. Thus  $b_n = b_1 \cdot 2^{n-1} = 2^n$ . Finally

$$a_n = b_n - 1 = 2^n - 1.$$

#### Remark

For first-order recurrence relations, we usually modify the sequence such that the new sequence is geometric and we can easily find. Then we recover the original sequence. This is a special case of the general method - characteristic polynomial.

< ロ > < 同 > < 三 > < 三 >

# Solving Fibonacci sequence

#### Remark

Note that in  $\{F_n\}$ , the value of each term depends on previous 2 terms. So it is of **second-order**. Is it still possible that  $\{F_n\}$  is very similar to a geometric progression?

< ロ > < 同 > < 三 > < 三 >

# Solving Fibonacci sequence

#### Remark

Note that in  $\{F_n\}$ , the value of each term depends on previous 2 terms. So it is of **second-order**. Is it still possible that  $\{F_n\}$  is very similar to a geometric progression?

#### Hint

Suppose there is  $a, r \neq 0$  such that  $F_n = a \cdot r^n$ , then what property should a and r satisfy?

# Solving Fibonacci sequence

#### Remark

Note that in  $\{F_n\}$ , the value of each term depends on previous 2 terms. So it is of **second-order**. Is it still possible that  $\{F_n\}$  is very similar to a geometric progression?

#### Hint

Suppose there is  $a, r \neq 0$  such that  $F_n = a \cdot r^n$ , then what property should a and r satisfy?

$$a \cdot r^{n+2} = a \cdot r^{n+1} + a \cdot r^n.$$

# Solving Fibonacci sequence

#### Remark

Note that in  $\{F_n\}$ , the value of each term depends on previous 2 terms. So it is of **second-order**. Is it still possible that  $\{F_n\}$  is very similar to a geometric progression?

#### Hint

Suppose there is  $a, r \neq 0$  such that  $F_n = a \cdot r^n$ , then what property should a and r satisfy?

$$a \cdot r^{n+2} = a \cdot r^{n+1} + a \cdot r^n.$$

Divided by nonzero  $a \cdot r^n$ , we get

$$r^2 = r + 1.$$

# Solving Fibonacci sequence

Now we know that if a real number r satisfies  $r^2 = r + 1$ , then  $F_n = a \cdot r^n$  satisfies the recurrence relation, all we need to fix is the values of the initial terms.

くロ と く 同 と く ヨ と 一

# Solving Fibonacci sequence

Now we know that if a real number r satisfies  $r^2 = r + 1$ , then  $F_n = a \cdot r^n$  satisfies the recurrence relation, all we need to fix is the values of the initial terms.

The quadratic equation  $x^2 - x - 1 = 0$  has 2 real roots  $\frac{1\pm\sqrt{5}}{2}$ , and it turns out that the Fibonacci numbers are a linear combination of these two:

# Solving Fibonacci sequence

Now we know that if a real number r satisfies  $r^2 = r + 1$ , then  $F_n = a \cdot r^n$  satisfies the recurrence relation, all we need to fix is the values of the initial terms.

The quadratic equation  $x^2 - x - 1 = 0$  has 2 real roots  $\frac{1\pm\sqrt{5}}{2}$ , and it turns out that the Fibonacci numbers are a linear combination of these two:

#### Theorem

$$F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{1-\sqrt{5}}{2} \right)^n \right] \forall n \in \mathbb{Z}, n \ge 0.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# The characteristic polynomial

#### Definition

If the recurrence relation is  $a_{k+2} = ra_{k+1} + sa_k$  where  $r, s \in \mathbb{R}$ , its characteristic polynomial is  $x^2 - rx - s$ .

くロ と く 同 と く ヨ と 一

# The characteristic polynomial

#### Definition

If the recurrence relation is  $a_{k+2} = ra_{k+1} + sa_k$  where  $r, s \in \mathbb{R}$ , its characteristic polynomial is  $x^2 - rx - s$ .

#### Theorem

Let  $x_1$  and  $x_2$  be the roots of the polynomial  $x^2 - rx - s$ . Then the solution of the recurrence relation  $a_n = ra_{n-1} + sa_{n-2}, n \ge 2$  is

$$a_n = \begin{cases} c_1 x_1^n + c_2 x_2^n, & \text{if } x_1 \neq x_2; \\ c_1 x^n + c_2 n x^n, & \text{if } x_1 = x_2 = x. \end{cases}$$

くロ と く 同 と く ヨ と 一

### Example: second-order recurrence relation

#### Example

Solve the recurrence relation  $a_n = 5a_{n-1} - 6a_{n-2}$  for  $n \ge 2$  and  $a_0 = -3, a_1 = -2$ .

3

# Example: second-order recurrence relation

#### Example

Solve the recurrence relation  $a_n = 5a_{n-1} - 6a_{n-2}$  for  $n \ge 2$  and  $a_0 = -3, a_1 = -2$ .

#### Hint

By the theorem above, we solve the characteristic polynomial and know the general form of solutions, with constants  $c_1, c_2$  to be determined.

э

# Example: second-order recurrence relation

#### Example

Solve the recurrence relation  $a_n = 5a_{n-1} - 6a_{n-2}$  for  $n \ge 2$  and  $a_0 = -3, a_1 = -2$ .

#### Hint

By the theorem above, we solve the characteristic polynomial and know the general form of solutions, with constants  $c_1, c_2$  to be determined. The two initial terms would establish two linear equations for  $c_1, c_2$ , which leads to a unique solution. For more details, see Section 5.3 Exercise 25 in Homework.

3

### Example: second-order recurrence relation

#### Solution

Here r = 5, s = -6. The characteristic polynomial is  $x^2 - 5x + 6 = (x - 2)(x - 3)$ . So the roots are 2 and 3.

# Example: second-order recurrence relation

#### Solution

Here r = 5, s = -6. The characteristic polynomial is  $x^2 - 5x + 6 = (x - 2)(x - 3)$ . So the roots are 2 and 3. We may write the solution as

 $a_n = c_1 2^n + c_2 3^n.$ 

### Example: second-order recurrence relation

#### Solution

Here r = 5, s = -6. The characteristic polynomial is  $x^2 - 5x + 6 = (x - 2)(x - 3)$ . So the roots are 2 and 3. We may write the solution as

$$a_n = c_1 2^n + c_2 3^n.$$

Note that this is also true when n = 0, 1. We then plug-in n = 0, 1:

$$-3 = a_0 = c_1 2^0 + c_2 3^0 = c_1 + c_2$$
$$-2 = a_1 = c_1 2^1 + c_2 3^1 = 2c_1 + 3c_2.$$

# Example: second-order recurrence relation

#### Solution

Here r = 5, s = -6. The characteristic polynomial is  $x^2 - 5x + 6 = (x - 2)(x - 3)$ . So the roots are 2 and 3. We may write the solution as

$$a_n = c_1 2^n + c_2 3^n.$$

Note that this is also true when n = 0, 1. We then plug-in n = 0, 1:

$$-3 = a_0 = c_1 2^0 + c_2 3^0 = c_1 + c_2$$
$$-2 = a_1 = c_1 2^1 + c_2 3^1 = 2c_1 + 3c_2.$$

Finally, we solve for  $c_1, c_2$ .  $c_2 = (2c_1 + 3c_2) - 2(c_1 + c_2) = -2 - 2 \cdot (-3) = 4$ . And  $c_1 = -3 - c_2 = -7$ . The solution is  $a_n = (-7) \cdot 2^n + 4 \cdot 3^n$ .

# HW Assignment #5 - today's sections

# Section 5.2 Exercise 5, 6, 33(c)(d), 48, 51. Section 5.3 Exercise 2, 11, 25.

Bo Lin Math 2603 - Lecture 10 Section 5.2 & 5.3 Recursively defined se

| 4 同 1 4 三 1 4 三