
Algorithms
Complexity

Math 2603 - Lecture 11
Section 8.1 & 8.2 Algorithms

Bo Lin

September 24th, 2019

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms

Algorithms
Complexity

How computers work

We know that nowadays computers are very powerful. They can do
a lot of tasks in a very short period of time.

But what are their limitations? They can only do tasks that people
have instructed them to do so.
In general, those instructions should be clear and doable. They are
called algorithms.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

How computers work

We know that nowadays computers are very powerful. They can do
a lot of tasks in a very short period of time.
But what are their limitations? They can only do tasks that people
have instructed them to do so.

In general, those instructions should be clear and doable. They are
called algorithms.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

How computers work

We know that nowadays computers are very powerful. They can do
a lot of tasks in a very short period of time.
But what are their limitations? They can only do tasks that people
have instructed them to do so.
In general, those instructions should be clear and doable. They are
called algorithms.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Etymology

Remark

The word ”algorithm” comes
from the name of a Persian
mathematician, Muh. ammad
ibn Mūsā al-Khwārizm̄ı
(c. 780 – c. 850)., who wrote
a book about arithmetic of
numerals we use today. And
the word ”algebra” comes
from the Latin title of that
book.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Definition

Definition

An algorithm is a clearly specified method (or procedure) for
solving a problem.

Remark

An algorithm consists of the following components:

the input;

the output;

a sequence of precise steps for converting the input to the
output.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Definition

Definition

An algorithm is a clearly specified method (or procedure) for
solving a problem.

Remark

An algorithm consists of the following components:

the input;

the output;

a sequence of precise steps for converting the input to the
output.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: Euclidean algorithm

Example

Euclidean algorithm is a procedure to find gcd(a, b).

Input: nonzero integers a, b.

Output: d = gcd(a, b).

Steps:
(1) If a < b, we may switch a and b, and the gcd remains

unchanged. So we may assume a ≥ b.
(2) Apply the division algorithm for a divided by b, we obtain a

unique pair of quotient q and remainder r.
(3) Now there are two cases: if r = 0, the output d should be b,

and we are done; if r 6= 0, it suffices to compute b divided by
r, and thus we repeat step (2).

Remark

Like induction, there may be steps that are repeated many times.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: Euclidean algorithm

Example

Euclidean algorithm is a procedure to find gcd(a, b).

Input: nonzero integers a, b.

Output: d = gcd(a, b).

Steps:
(1) If a < b, we may switch a and b, and the gcd remains

unchanged. So we may assume a ≥ b.

(2) Apply the division algorithm for a divided by b, we obtain a
unique pair of quotient q and remainder r.

(3) Now there are two cases: if r = 0, the output d should be b,
and we are done; if r 6= 0, it suffices to compute b divided by
r, and thus we repeat step (2).

Remark

Like induction, there may be steps that are repeated many times.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: Euclidean algorithm

Example

Euclidean algorithm is a procedure to find gcd(a, b).

Input: nonzero integers a, b.

Output: d = gcd(a, b).

Steps:
(1) If a < b, we may switch a and b, and the gcd remains

unchanged. So we may assume a ≥ b.
(2) Apply the division algorithm for a divided by b, we obtain a

unique pair of quotient q and remainder r.

(3) Now there are two cases: if r = 0, the output d should be b,
and we are done; if r 6= 0, it suffices to compute b divided by
r, and thus we repeat step (2).

Remark

Like induction, there may be steps that are repeated many times.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: Euclidean algorithm

Example

Euclidean algorithm is a procedure to find gcd(a, b).

Input: nonzero integers a, b.

Output: d = gcd(a, b).

Steps:
(1) If a < b, we may switch a and b, and the gcd remains

unchanged. So we may assume a ≥ b.
(2) Apply the division algorithm for a divided by b, we obtain a

unique pair of quotient q and remainder r.
(3) Now there are two cases: if r = 0, the output d should be b,

and we are done;

if r 6= 0, it suffices to compute b divided by
r, and thus we repeat step (2).

Remark

Like induction, there may be steps that are repeated many times.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: Euclidean algorithm

Example

Euclidean algorithm is a procedure to find gcd(a, b).

Input: nonzero integers a, b.

Output: d = gcd(a, b).

Steps:
(1) If a < b, we may switch a and b, and the gcd remains

unchanged. So we may assume a ≥ b.
(2) Apply the division algorithm for a divided by b, we obtain a

unique pair of quotient q and remainder r.
(3) Now there are two cases: if r = 0, the output d should be b,

and we are done; if r 6= 0, it suffices to compute b divided by
r, and thus we repeat step (2).

Remark

Like induction, there may be steps that are repeated many times.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: Euclidean algorithm

Example

Euclidean algorithm is a procedure to find gcd(a, b).

Input: nonzero integers a, b.

Output: d = gcd(a, b).

Steps:
(1) If a < b, we may switch a and b, and the gcd remains

unchanged. So we may assume a ≥ b.
(2) Apply the division algorithm for a divided by b, we obtain a

unique pair of quotient q and remainder r.
(3) Now there are two cases: if r = 0, the output d should be b,

and we are done; if r 6= 0, it suffices to compute b divided by
r, and thus we repeat step (2).

Remark

Like induction, there may be steps that are repeated many times.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: loop and counter

Example

Find an algorithm to compute
∑n

k=1 ak.

Solution

Input: numbers a1, a2, · · · , an. Output: their sum S =
∑n

k=1 ak.

(1) Set S = 0.

(2) For i = 1 to n, replace S by S + ai.

(3) Output S.

Remark

Step (2) is called a loop. The variable i is called a counter.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: loop and counter

Example

Find an algorithm to compute
∑n

k=1 ak.

Solution

Input: numbers a1, a2, · · · , an. Output: their sum S =
∑n

k=1 ak.

(1) Set S = 0.

(2) For i = 1 to n, replace S by S + ai.

(3) Output S.

Remark

Step (2) is called a loop. The variable i is called a counter.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: loop and counter

Example

Find an algorithm to compute
∑n

k=1 ak.

Solution

Input: numbers a1, a2, · · · , an. Output: their sum S =
∑n

k=1 ak.

(1) Set S = 0.

(2) For i = 1 to n, replace S by S + ai.

(3) Output S.

Remark

Step (2) is called a loop. The variable i is called a counter.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Horner’s Algorithm

Example

Let integer n ≥ 0. Given integers a0, a1, · · · , an, x, evaluate the
expression

n∑
i=0

aix
i = a0 + a1x+ · · ·+ anx

n.

Solution (Horner’s Algorithm)

Input: integers a0, a1, · · · , an, x; output: the above sum S.

1 Set S = an.

2 For i = 1 to n, replace S by an−i + S · x.

3 Output S.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Horner’s Algorithm

Example

Let integer n ≥ 0. Given integers a0, a1, · · · , an, x, evaluate the
expression

n∑
i=0

aix
i = a0 + a1x+ · · ·+ anx

n.

Solution (Horner’s Algorithm)

Input: integers a0, a1, · · · , an, x; output: the above sum S.

1 Set S = an.

2 For i = 1 to n, replace S by an−i + S · x.

3 Output S.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Correctness

Remark

When n = 0, Horner’s algorithm is correct, as the output is
an = a0.

In general, note that the term an−k is introduced when i = k, so it
is multiplied by x for exactly n− k times later, and results in a
summand of an−kx

n−k.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Correctness

Remark

When n = 0, Horner’s algorithm is correct, as the output is
an = a0.
In general, note that the term an−k is introduced when i = k, so it
is multiplied by x for exactly n− k times later, and results in a
summand of an−kx

n−k.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

An application of Horner’s algorithm

Example

Evaluate f(−2) where f(x) = 4x3 − 2x+ 1.

Solution

We have n = 3, a0 = 1, a1 = −2, a2 = 0, a3 = 4 and x = −2. The
initial value of S is S = a3 = 4. Next

S = a2 + Sx = 0 + 4 · (−2) = −8.
S = a1 + Sx = −2 + (−8) · (−2) = 14.

S = a0 + Sx = 1 + 14 · (−2) = −27.

So the output is S = −27.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

An application of Horner’s algorithm

Example

Evaluate f(−2) where f(x) = 4x3 − 2x+ 1.

Solution

We have n = 3, a0 = 1, a1 = −2, a2 = 0, a3 = 4 and x = −2.

The
initial value of S is S = a3 = 4. Next

S = a2 + Sx = 0 + 4 · (−2) = −8.
S = a1 + Sx = −2 + (−8) · (−2) = 14.

S = a0 + Sx = 1 + 14 · (−2) = −27.

So the output is S = −27.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

An application of Horner’s algorithm

Example

Evaluate f(−2) where f(x) = 4x3 − 2x+ 1.

Solution

We have n = 3, a0 = 1, a1 = −2, a2 = 0, a3 = 4 and x = −2. The
initial value of S is S = a3 = 4.

Next

S = a2 + Sx = 0 + 4 · (−2) = −8.
S = a1 + Sx = −2 + (−8) · (−2) = 14.

S = a0 + Sx = 1 + 14 · (−2) = −27.

So the output is S = −27.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

An application of Horner’s algorithm

Example

Evaluate f(−2) where f(x) = 4x3 − 2x+ 1.

Solution

We have n = 3, a0 = 1, a1 = −2, a2 = 0, a3 = 4 and x = −2. The
initial value of S is S = a3 = 4. Next

S = a2 + Sx = 0 + 4 · (−2) = −8.
S = a1 + Sx = −2 + (−8) · (−2) = 14.

S = a0 + Sx = 1 + 14 · (−2) = −27.

So the output is S = −27.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Complexity

Algorithms
Complexity

Motivation

It’s good if we have algorithms to solve problems. However, in
practice we need to consider other issues.

If an algorithm takes an huge amount of time to generate the
output, it is not very useful. So we want to measure the efficiency
of algorithms. This is the motivation of our analysis of complexity.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Motivation

It’s good if we have algorithms to solve problems. However, in
practice we need to consider other issues.
If an algorithm takes an huge amount of time to generate the
output, it is not very useful. So we want to measure the efficiency
of algorithms. This is the motivation of our analysis of complexity.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Definition

Definition

For a given algorithm, we can define a complexity function
f : N→ N such that for some measure n of the size of the input,
f(n) is the upper bound for the number of operations required to
carry out the algorithm.

Example

In the algorithm summing n integers, f(n) = n. In Horner’s
algorithm, f(n) = 2n+ 1.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Definition

Definition

For a given algorithm, we can define a complexity function
f : N→ N such that for some measure n of the size of the input,
f(n) is the upper bound for the number of operations required to
carry out the algorithm.

Example

In the algorithm summing n integers, f(n) = n.

In Horner’s
algorithm, f(n) = 2n+ 1.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Definition

Definition

For a given algorithm, we can define a complexity function
f : N→ N such that for some measure n of the size of the input,
f(n) is the upper bound for the number of operations required to
carry out the algorithm.

Example

In the algorithm summing n integers, f(n) = n. In Horner’s
algorithm, f(n) = 2n+ 1.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Complexity is approximate

Remark

In most cases, it is impossible to rigorously evaluate f(n). For
example, we don’t know exactly how many divisions we need to do
for the Euclidean algorithm.

Fortunately, it does not matter very
much whether f(n) is 2n or 2n+ 1 when n is large. As a result,
keep in mind that when we talk about complexity, we almost
always use approximations.

Remark

Another issue is: does it make sense to just counter the number of
operations? Is it possible that different operations are quite
different in nature?It is possible, for example, adding 13 + 21 is
way much simpler than adding two 50-digit integers. Nonetheless,
in most cases and in this course, we can still analyze approximately
like this.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Complexity is approximate

Remark

In most cases, it is impossible to rigorously evaluate f(n). For
example, we don’t know exactly how many divisions we need to do
for the Euclidean algorithm.Fortunately, it does not matter very
much whether f(n) is 2n or 2n+ 1 when n is large. As a result,
keep in mind that when we talk about complexity, we almost
always use approximations.

Remark

Another issue is: does it make sense to just counter the number of
operations? Is it possible that different operations are quite
different in nature?It is possible, for example, adding 13 + 21 is
way much simpler than adding two 50-digit integers. Nonetheless,
in most cases and in this course, we can still analyze approximately
like this.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Complexity is approximate

Remark

In most cases, it is impossible to rigorously evaluate f(n). For
example, we don’t know exactly how many divisions we need to do
for the Euclidean algorithm.Fortunately, it does not matter very
much whether f(n) is 2n or 2n+ 1 when n is large. As a result,
keep in mind that when we talk about complexity, we almost
always use approximations.

Remark

Another issue is: does it make sense to just counter the number of
operations? Is it possible that different operations are quite
different in nature?

It is possible, for example, adding 13 + 21 is
way much simpler than adding two 50-digit integers. Nonetheless,
in most cases and in this course, we can still analyze approximately
like this.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Complexity is approximate

Remark

In most cases, it is impossible to rigorously evaluate f(n). For
example, we don’t know exactly how many divisions we need to do
for the Euclidean algorithm.Fortunately, it does not matter very
much whether f(n) is 2n or 2n+ 1 when n is large. As a result,
keep in mind that when we talk about complexity, we almost
always use approximations.

Remark

Another issue is: does it make sense to just counter the number of
operations? Is it possible that different operations are quite
different in nature?It is possible, for example, adding 13 + 21 is
way much simpler than adding two 50-digit integers. Nonetheless,
in most cases and in this course, we can still analyze approximately
like this.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

The Big Oh notation

As a result, we introduce symbols to describe asymptotic
behaviors of complexity functions.

Definition

Let f, g : N→ R be functions. We say that f is Big Oh of g,
written f = O(g) (LATEX symbol \mathcal{O}), if there is an
integer n0 and a positive real number c such that

|f(n)| ≤ c|g(n)| ∀ n ≥ n0.

Remark

Intuitively, f = O(g) if for sufficiently large n, |f(n)| is
”dominated” by |g(n)|.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

The Big Oh notation

As a result, we introduce symbols to describe asymptotic
behaviors of complexity functions.

Definition

Let f, g : N→ R be functions. We say that f is Big Oh of g,
written f = O(g) (LATEX symbol \mathcal{O}), if there is an
integer n0 and a positive real number c such that

|f(n)| ≤ c|g(n)| ∀ n ≥ n0.

Remark

Intuitively, f = O(g) if for sufficiently large n, |f(n)| is
”dominated” by |g(n)|.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

The Big Oh notation

As a result, we introduce symbols to describe asymptotic
behaviors of complexity functions.

Definition

Let f, g : N→ R be functions. We say that f is Big Oh of g,
written f = O(g) (LATEX symbol \mathcal{O}), if there is an
integer n0 and a positive real number c such that

|f(n)| ≤ c|g(n)| ∀ n ≥ n0.

Remark

Intuitively, f = O(g) if for sufficiently large n, |f(n)| is
”dominated” by |g(n)|.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: comparing functions

Example

By induction we already proved that 2n > n for all n ∈ N. So if
f(n) = n and g(n) = 2n, we can take c = 1 and n0 = 1 and we
have f = O(g).

Example

If f(n) = 100n, g(n) = n2. Is f = O(g)?

Solution

Yes. We can take c = 1, n0 = 100, or alternatively c = 100, n0 = 1.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: comparing functions

Example

By induction we already proved that 2n > n for all n ∈ N. So if
f(n) = n and g(n) = 2n, we can take c = 1 and n0 = 1 and we
have f = O(g).

Example

If f(n) = 100n, g(n) = n2. Is f = O(g)?

Solution

Yes. We can take c = 1, n0 = 100, or alternatively c = 100, n0 = 1.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: comparing functions

Example

By induction we already proved that 2n > n for all n ∈ N. So if
f(n) = n and g(n) = 2n, we can take c = 1 and n0 = 1 and we
have f = O(g).

Example

If f(n) = 100n, g(n) = n2. Is f = O(g)?

Solution

Yes. We can take c = 1, n0 = 100, or alternatively c = 100, n0 = 1.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Some properties of Big Oh

Proposition

Let f, g, f1, g1 : N→ R.

(1) If f = O(g), then f + g = O(g).
(2) If f = O(f1) and g = O(g1), then fg = O(f1g1).

Sketch of proof.

(1) When |f(n)| ≤ c|g(n)|, we also have

|(f + g)(n)| = |f(n) + g(n)| ≤ |f(n)|+ |g(n)| ≤ (c+ 1)|g(n)|.

(2) When |f(n)| ≤ c1|f1(n)| and |g(n)| ≤ c2|g1(n)|, we also have

|(fg)(n)| = |f(n)g(n)| = |f(n)| · |g(n)|
≤ c1c2|f1(n)| · |g1(n)| = c1c2|(f1g1)(n)|.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Some properties of Big Oh

Proposition

Let f, g, f1, g1 : N→ R.

(1) If f = O(g), then f + g = O(g).
(2) If f = O(f1) and g = O(g1), then fg = O(f1g1).

Sketch of proof.

(1) When |f(n)| ≤ c|g(n)|, we also have

|(f + g)(n)| = |f(n) + g(n)| ≤ |f(n)|+ |g(n)| ≤ (c+ 1)|g(n)|.

(2) When |f(n)| ≤ c1|f1(n)| and |g(n)| ≤ c2|g1(n)|, we also have

|(fg)(n)| = |f(n)g(n)| = |f(n)| · |g(n)|
≤ c1c2|f1(n)| · |g1(n)| = c1c2|(f1g1)(n)|.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Some properties of Big Oh

Proposition

Let f, g, f1, g1 : N→ R.

(1) If f = O(g), then f + g = O(g).
(2) If f = O(f1) and g = O(g1), then fg = O(f1g1).

Sketch of proof.

(1) When |f(n)| ≤ c|g(n)|, we also have

|(f + g)(n)| = |f(n) + g(n)| ≤ |f(n)|+ |g(n)| ≤ (c+ 1)|g(n)|.

(2) When |f(n)| ≤ c1|f1(n)| and |g(n)| ≤ c2|g1(n)|, we also have

|(fg)(n)| = |f(n)g(n)| = |f(n)| · |g(n)|
≤ c1c2|f1(n)| · |g1(n)| = c1c2|(f1g1)(n)|.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Order of functions

Definition

Let f, g : N→ R be functions. We say that f has smaller order
than g, written f ≺ g (LATEX symbol \prec), if f = O(g) and
g 6= O(f).
If f = O(g) and g = O(f), we say that f and g have the same
order and write f � g (LATEX symbol \asymp).

Proposition

� is an equivalence relation defined on the set of functions N→ R.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Order of functions

Definition

Let f, g : N→ R be functions. We say that f has smaller order
than g, written f ≺ g (LATEX symbol \prec), if f = O(g) and
g 6= O(f).
If f = O(g) and g = O(f), we say that f and g have the same
order and write f � g (LATEX symbol \asymp).

Proposition

� is an equivalence relation defined on the set of functions N→ R.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Perspective from limits

Proposition

Let f, g : N→ R be functions.

(a) if lim
n→∞

f(n)
g(n) = 0, then f ≺ g.

(b) if lim
n→∞

∣∣∣f(n)g(n)

∣∣∣ =∞, then g ≺ f .

(c) if lim
n→∞

f(n)
g(n) = L, where L is a nonzero real number, then

f � g.

Corollary

A polynomial function of n has the same order as its highest
power: if f(n) = atn

t + · · ·+ a1n+ a0 is a polynomial with degree
t, then f(n) � nt.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Perspective from limits

Proposition

Let f, g : N→ R be functions.

(a) if lim
n→∞

f(n)
g(n) = 0, then f ≺ g.

(b) if lim
n→∞

∣∣∣f(n)g(n)

∣∣∣ =∞, then g ≺ f .

(c) if lim
n→∞

f(n)
g(n) = L, where L is a nonzero real number, then

f � g.

Corollary

A polynomial function of n has the same order as its highest
power: if f(n) = atn

t + · · ·+ a1n+ a0 is a polynomial with degree
t, then f(n) � nt.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

A hierarchy of orders

Remark

We have the following hierarchy of orders:

1

n
≺ 1 ≺ log n ≺

√
n ≺ n

log n
≺ n ≺ n log n ≺ n2 ≺ n3 ≺ · · ·

nt ≺ 2n ≺ 3n ≺ · · · ≺ n! ≺ nn ≺ nnn ≺ · · ·

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

A hierarchy of orders

Remark

We have the following hierarchy of orders:

1

n
≺ 1 ≺ log n ≺

√
n ≺ n

log n
≺ n ≺ n log n ≺ n2 ≺ n3 ≺ · · ·

nt ≺ 2n ≺ 3n ≺ · · · ≺ n! ≺ nn ≺ nnn ≺ · · ·

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: complexity of additions

Example

How many steps of single-digit additions are there at most when
adding two n-digit integers?

Solution

Unit digit: 1 step; carry may happen at every digit, so for each
subsequent digit, 2 steps. In total 1 + 2(n− 1) = 2n− 1 steps.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: complexity of additions

Example

How many steps of single-digit additions are there at most when
adding two n-digit integers?

Solution

Unit digit: 1 step;

carry may happen at every digit, so for each
subsequent digit, 2 steps. In total 1 + 2(n− 1) = 2n− 1 steps.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: complexity of additions

Example

How many steps of single-digit additions are there at most when
adding two n-digit integers?

Solution

Unit digit: 1 step; carry may happen at every digit, so for each
subsequent digit, 2 steps. In total 1 + 2(n− 1) = 2n− 1 steps.

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: complexity of additions

Example

How many steps of single-digit additions are there at most when
adding m n-digit integers?

Solution

First addition: 2n− 1 steps. Next, note that the first sum may
have one more digit, so 2(n+ 1)− 1 = 2n+ 1. And subsequent
additions: 2n+ 3, 2n+ 5, · · · In total we have m− 1 additions:

(2n−1)+· · ·+(2n+2m−5) = (m−1)(2n+2m−3) < m(2n+m).

Corollary

When m ≤ n, this complexity < n(2n+ n) = 3n2, which is O(n2);
when n ≤ m, this complexity < m(2m+m) = 3m2, which is
O(m2).

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: complexity of additions

Example

How many steps of single-digit additions are there at most when
adding m n-digit integers?

Solution

First addition: 2n− 1 steps.

Next, note that the first sum may
have one more digit, so 2(n+ 1)− 1 = 2n+ 1. And subsequent
additions: 2n+ 3, 2n+ 5, · · · In total we have m− 1 additions:

(2n−1)+· · ·+(2n+2m−5) = (m−1)(2n+2m−3) < m(2n+m).

Corollary

When m ≤ n, this complexity < n(2n+ n) = 3n2, which is O(n2);
when n ≤ m, this complexity < m(2m+m) = 3m2, which is
O(m2).

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: complexity of additions

Example

How many steps of single-digit additions are there at most when
adding m n-digit integers?

Solution

First addition: 2n− 1 steps. Next, note that the first sum may
have one more digit, so 2(n+ 1)− 1 = 2n+ 1. And subsequent
additions: 2n+ 3, 2n+ 5, · · · In total we have m− 1 additions:

(2n−1)+· · ·+(2n+2m−5) = (m−1)(2n+2m−3) < m(2n+m).

Corollary

When m ≤ n, this complexity < n(2n+ n) = 3n2, which is O(n2);
when n ≤ m, this complexity < m(2m+m) = 3m2, which is
O(m2).

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Example: complexity of additions

Example

How many steps of single-digit additions are there at most when
adding m n-digit integers?

Solution

First addition: 2n− 1 steps. Next, note that the first sum may
have one more digit, so 2(n+ 1)− 1 = 2n+ 1. And subsequent
additions: 2n+ 3, 2n+ 5, · · · In total we have m− 1 additions:

(2n−1)+· · ·+(2n+2m−5) = (m−1)(2n+2m−3) < m(2n+m).

Corollary

When m ≤ n, this complexity < n(2n+ n) = 3n2, which is O(n2);
when n ≤ m, this complexity < m(2m+m) = 3m2, which is
O(m2).

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

Algorithms
Complexity

Homework Assignment #6

Section 8.1 Exercise
8,9,16,17(d)-Horner’s algorithm only.
Section 8.2 Exercise
7(b)(f),12,17,19(a)(c)(f).

Bo Lin Math 2603 - Lecture 11 Section 8.1 & 8.2 Algorithms

	Algorithms
	Complexity

