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Motivation

When solving problem, the following searching tasks are very
common.

Given numbers a1, . . . , an, check whether a particular number
x appears among them. (Example: set membership)

Given sorted real numbers a1 ≤ a2 ≤ . . . ≤ an and another
real number x, find an index i such that ai ≤ x < ai+1.
(Example: floor and ceiling functions)

They are required by many other processes and are repeated many
times, so we would like to find efficient algorithms for them.
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A straightforward approach

For the first type of searching task, a straightforward approach
would be: compare x with every ai.

In general, if the data a1, . . . , an do not have any pattern, there is
no shortcut. The reason is very simple: every ai could be x, so in
the worst case when x is not equal to all other aj for j 6= i, one
still cannot ignore ai.
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A linear search algorithm

input : Real numbers a1, . . . , an and x.
output: If x appear among ai’s, ”True”; otherwise, ”False”.

for i← 1 to n do
if x = ai then

output ”True”;
set i = 2n;

end

end
Output ”False;

Algorithm 1: Linear Search
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Example: linear search

Example

Suppose (a1, a2, a3, a4) = (6, 0,−2, 1) and x = −2.

Solution

i = 1: compare x with a1 = 6, not equal;

i = 2: compare x with a2 = 0, not equal;

i = 3: compare x with a3 = −2, equal;

output ”True”;

set i = 2n = 8;

since i = 8 > 4 = n, the algorithm terminates.
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An analysis

Remark

The purpose of setting i = 2n is to indicate that we already found
x in the search. And i has a value not in 1 to n, so the loop stops
immediately.

Example

What is the complexity function of this algorithm? For each i, we
need one comparison between x and ai. Is it all it takes?
Please note that, we still need to check whether the procedure is
over, which means whether i = n. So it takes 2 comparisons for
each i, and the complexity function would be 2n = O(n).

Remark

If the data is well-organized, we have a more efficient searching
algorithm.
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Binary search

Example

Suppose I have a roster of Math 2603, where your first names are
listed in alphabetical order. Now I am looking for a student with
first name Tony, how should I do?

Looking from the top may not be a good idea, because the initial
T is the 20th letter among the 26 letters in the English alphabet.
So I probably focus on the second half of the roster.

Remark

This is exactly the motivation of binary search. It’s advantage is
that each time we can drop half of the data and narrow down the
space we need to search next.
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A binary search algorithm

input : Real numbers a1 ≤ a2 ≤ · · · ≤ an and x.
output: If x appear among ai’s, ”True”; otherwise, ”False”.
while n > 0 do

if n = 1 then
if x = a1 then output ”True”; set n = 0 ;
else output ”False”; set n = 0 ;

end
else

Set m = bn2 c;
if x = am then output ”True”; set n = 0 ;
else if x < am then replace the current list with a1, · · · , am;

set n = m ;
else replace the current list with am+1, · · · , an; set
n = n−m ;

end

end

Algorithm 2: Binary Search
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Example: binary search

Example

Suppose x = 12 and
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
5 6 7 10 11 12 15 17 19 20

Solution

n = 10 > 0; m = b102 c = 5.

compare x = 12 with am = a5 = 11, x ≤ am is false.

replace the list by (a1, a2, a3, a4, a5) = (12, 15, 17, 19, 20);
replace n by n−m = 10− 5.

n = 5 > 0; m = b52c = 2.

compare x = 12 with am = a2 = 15, x ≤ am is true.

replace the list by (a1, a2) = (12, 15); replace n by m = 2.
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Example: binary search

Solution

n = 2 > 0; m = b22c = 1.

compare x = 12 with am = a1 = 12, x ≤ am is true.

output ”True”; Set n = 0.

n = 0; the algorithm terminates.
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Complexity analysis

We first assume that n = 2k for some k ∈ N. Then there are at
most k rounds of list replacement.

In each round, the comparison
steps are: n > 0? n = 1? x ≤ am? So 3 comparisons. Finally
there is one more comparison when n = 1: x = a1?

Remark

If n = 2k, the complexity of the binary search algorithm is
3k + 1 = 3 log2 n. For general n, the order remains the same, so
this algorithm has complexity O(log n).
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Motivation

Remark

Comparing the two algorithms of searching, we can see that a
sorted pattern of the data is very useful to simplify other
operations.

Definition

A sorting algorithm puts a list of numbers into increasing order or
a list of words into alphabetical order.
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Bubble Sort

Remark

Suppose we want to sort a list of numbers a1, · · · , an in increasing
order. Then which number should be in the end?

The largest
number among the list. So we can go through the list and try to
pass the largest number all the way to the right. This is the
motivation of the bubble sort.

In the first round, we compare a1 and a2 and then put the larger
one as new a2; next we compare a2 and a3, then put the larger one
as new a3; and so on . . .

Remark

One largest number in the list will reach an after this round. Then
we repeat the process for the remaining n− 1 numbers.
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Bubble Sort algorithm

input : Real numbers a1, a2, · · · , an
output: The same list of numbers in increasing order
for i = n− 1 down to 1 do

for j = 1 to i do
if aj > aj+1 then

swap aj and aj+1.
end

end

end
output a1, a2, · · · , an.

Algorithm 3: Bubble sort

Remark

Complexity function is
∑n−1

i=1 i = n(n−1)
2 = O(n2).
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Bubble Sort algorithm

input : Real numbers a1, a2, · · · , an
output: The same list of numbers in increasing order
for i = n− 1 down to 1 do

for j = 1 to i do
if aj > aj+1 then

swap aj and aj+1.
end

end

end
output a1, a2, · · · , an.
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Remark
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2 = O(n2).
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Example: bubble sort

Example

Apply bubble sort to the list 3, 1, 7, 2, 5, 4.

Solution

round 1: 317254→ 137254→ 137254→ 132754→
132574→ 132547.

round 2: 132547→ 132547→ 123547→ 123547→ 123457.

round 3: no more swap needed; output 1, 2, 3, 4, 5, 7 and
terminate.
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Merging

Remark

There are sorting algorithms with complexity better than O(n2).

Example

Suppose for 2 studio sections of Math 2603, I have sorted your
exam papers in alphabetical order. How can I combine these
papers in alphabetical order?

Solution

First I compare the first paper in each section. Suppose they are
Alice from section A and Bob from section B. Then Alice would
be the very first name after combination. Now who could be the
overall 2nd? If from section B, it must be Bob; if from section A,
it must be the 2nd name in section A. So it turns out that in every
step, I need to do a single comparison.
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Merging algorithm

input : Sorted lists L1 : a1 ≤ a2 ≤ · · · ≤ as and
L2 : b1 ≤ b2 ≤ · · · ≤ bt

output: The union of L1 and L2 as a sorted list
L3 : c1 ≤ c2 ≤ · · · ≤ cs+t

set L3 to be an empty list; set i = 1; set j = 1;
while i ≤ s & j ≤ t do

if ai > bj then append bj to the end of L3; set j = j + 1 ;
else append ai to the end of L3; set i = i+ 1 ;

end
if i > s then append bj , · · · , bt to the end of L3 ;
else if j > t then append ai, · · · , as to the end of L3 ;
output L3.

Algorithm 5: Merging
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Merge sort

Remark

The complexity of the above merging algorithm is s+ t− 1, which
enables the merge sort algorithm.

The idea is simple: given n numbers, we divide them into two
parts, and we try to sort both parts first, then merge the two parts.
When sorting each part, we apply the same approach. So
essentially it is a recursive algorithm.
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Merge sort algorithm

input : Real numbers a1, a2, · · · , an

output: The same list of numbers in increasing order
for i← 1 to n do

set list Li be the single element ai;
end
set F = 0;
while F = 0 do

if n = 1 then set F = 1; output L1 ;
else if n = 2m is even then for i← 1 to m do

merge sorted lists L2i−1 and L2i and sort; label the new list Li;
end
set n = m ;
else if n = 2m+ 1 is odd then for i← 1 to m do

merge sorted lists L2i−1 and L2i and sort; label the new list Li;
set Lm+1 = Ln;

end
set n = m+ 1 ;

end

Algorithm 6: Merge sort
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Example: merge sort

Example

Sort 2, 9, 1, 4, 6, 5, 3.

Solution

Round 1: n = 7,m = 3; Li : ai for 1 ≤ i ≤ 7.

Round 2: n = 4,m = 2; L1 : 2, 9; L2 : 1, 4; L3 : 5, 6; L4 : 3.

Round 3: n = 2,m = 1; L1 : 1, 2, 4, 9; L2 : 3, 5, 6.

Round 3: n = 1; L1 : 1, 2, 3, 4, 5, 6, 9.
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The complexity

Suppose n = 2k, then there are k rounds. In the i-th round, we
have 2k+1−i lists with size 2i−1, and we merge sort them into 2k−i

lists with size 2i. The total number operations in the i-th round is
2k − 2k−i. So the total number is

k−1∑
i=0

(2k − 2k−i) = (k − 1)2k + 1.

In addition, in each round, there are three more comparisons:
n = 1? n = 2m? F = 0? So the complexity function is
(k − 1)2k + 3k + 1 = O(k2k) = O(n log n).

Remark

O(n log n) is the best complexity for sorting algorithms.
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Homework Assignment #7 - today

Section 8.3 Exercise 9, 10(c), 14, 24.

Bo Lin Lecture 12 search & sort


	Searching
	Sorting

