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The principle

Motivation: if n pigeons fly into m pigeonholes and n > m, then
at least one hole must contain two or more pigeons.

Theorem (The pigeonhole principle)

If n objects are put into m boxes and n > m, then at least one
box must contain two or more objects.
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Interpretation: contrapositive

Remark

Why this principle is true?

Suppose we put objects into m boxes.
Then we have the following true statement of implication:
if there is at most 1 object in each box (p), then there are at most
1 ·m = m objects in total (q).Now if we take the contrapositive,
we get ¬q → ¬p:
if there are more than m objects in total, then it’s not the case
that there is at most 1 object in each box, in other words, there
exists a box containing 2 or more objects.
This is exactly the pigeonhole principle. So in fact it’s very
straightforward to understand.
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Exercise: birthday

Example

There are 15 students coming to my office hour. Prove that there
must be two students whose birthdays are in the same month of
the year.

Proof.

Here the boxes are the 12 months, and the objects are the
students.There are 12 months of a year and 15 students, since
15 > 12, by the pigeonhole principle, there must be two students
whose birthdays are in the same month of the year.
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Example: relative prime

Example

Suppose n ∈ N. Now one chooses 3 elements from the set
{n, n+ 1, n+ 2, n+ 3}. Prove that there exist two chosen integers
that are relatively prime.

Proof.

We construct 2 boxes: {n, n+1} and {n+2, n+3}. There are 3 chosen
integers, by the pigeonhole principle, there exists a box with at least 2
chosen numbers. Since the box has exactly two elements, both must
have been chosen, and they are relatively prime.

Remark

We can also prove by cases, if n, n+ 1, n+ 2 are chosen, then the
statement is true because gcd(n, n+1) = 1; if n, n+2, n+3 are chosen,
then the statement is true because gcd(n+ 2, n+ 3) = 1, and so on.
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Constructive proofs vs existential proofs

For statements about the existence of certain objects, there is a
dichotomy of proofs:

Definition

A constructive proof justifies the existence by explicitly
constructing or finding the desired objects. In comparison, an
existential proof justifies their existence by axioms, true
statements and logic, but without explicitly pointing out what they
are.

Remark

Naturally, the pigeonhole principle is frequently used in existential
proofs.
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The strong form

In fact, when n is much larger than m, we can get a stronger
conclusion:

Theorem (The strong form of pigeonhole principle)

If n objects are put into m boxes, then at least one box must
contain at least

⌈
n
m

⌉
objects.

Proof.

We prove by contrapositive. If all boxes have at most
⌈
n
m

⌉
− 1 objects,

then there are at most m ·
(⌈

n
m

⌉
− 1

)
objects in total. Note that for any

real number x, we have dxe − 1 < x, we have
⌈
n
m

⌉
− 1 < n

m , hence

m ·
(⌈

n
m

⌉
− 1

)
< n. So there are less than n objects in total.

Remark⌈
n
m

⌉
is the best number we can get.
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Example: studio sections

Example

Suppose there are 109 students and 3 studio sections in this class,
and each student registers in exactly one studio section. Prove
that there exists a studio section with at least 37 students.

Proof.

We apply the strong form. Let n = 109 and m = 3, then there
exists a studio section with at least

⌈
109
3

⌉
= 37 students.
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Exercise: number of picks needed to ensure a result

Example

Suppose in an election there are 10 candidates, and each voter votes for
exactly one of them. What is the smallest number of voters such that no
matter how they vote, there is always a candidate who gets at least 5
votes?

Solution

Suppose there are n voters, by the strong form of pigeonhole
principle, there is always a candidate who gets at least

⌈
n
10

⌉
votes.

So if this number is 5, n is good. Note that⌈
40

10

⌉
= 4,

⌈
41

10

⌉
= 5.

So 41 voters is enough. While 40 voters may not work if each
candidate gets exactly 4 votes. So the answer is 41.

Bo Lin
Math 2603 - Lecture 14 Section 6.3 & 7.1 Pigeonhole Principle and permutations



The principle
Alternative Forms

Permutations

Exercise: number of picks needed to ensure a result

Example

Suppose in an election there are 10 candidates, and each voter votes for
exactly one of them. What is the smallest number of voters such that no
matter how they vote, there is always a candidate who gets at least 5
votes?

Solution

Suppose there are n voters, by the strong form of pigeonhole
principle, there is always a candidate who gets at least

⌈
n
10

⌉
votes.

So if this number is 5, n is good.

Note that⌈
40

10

⌉
= 4,

⌈
41

10

⌉
= 5.

So 41 voters is enough. While 40 voters may not work if each
candidate gets exactly 4 votes. So the answer is 41.

Bo Lin
Math 2603 - Lecture 14 Section 6.3 & 7.1 Pigeonhole Principle and permutations



The principle
Alternative Forms

Permutations

Exercise: number of picks needed to ensure a result

Example

Suppose in an election there are 10 candidates, and each voter votes for
exactly one of them. What is the smallest number of voters such that no
matter how they vote, there is always a candidate who gets at least 5
votes?

Solution

Suppose there are n voters, by the strong form of pigeonhole
principle, there is always a candidate who gets at least

⌈
n
10

⌉
votes.

So if this number is 5, n is good. Note that⌈
40

10

⌉
= 4,

⌈
41

10

⌉
= 5.

So 41 voters is enough. While 40 voters may not work if each
candidate gets exactly 4 votes. So the answer is 41.

Bo Lin
Math 2603 - Lecture 14 Section 6.3 & 7.1 Pigeonhole Principle and permutations



The principle
Alternative Forms

Permutations

Example: how to construct the boxes

Example

Prove that for any sequence of integers a1, a2, · · · , a10, there is a
string of consecutive integers among them al, al+1, · · · , ak whose
sum is a multiple of 10.

Proof.

Consider the numbers

a1, a1 + a2, · · · , a1 + . . .+ a10.

If any one of them is a multiple of 10, we are done. Otherwise they
belong to the remaining 9 congruence classes modulo 10. By
Pigeonhole principle, there exists two numbers that are congruent
modulo 10. Hence their difference is a multiple of 10 and it is still
the sum of consecutive integers among the sequence.
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The infinite and uncountable form

Theorem (Infinite version of pigeonhole principle)

If infinitely many objects are put into finitely many boxes, then at
least one box must contain infinitely many objects.

Theorem (Uncountable version of pigeonhole principle)

If uncountably many objects are put into countably many boxes,
then at least one box must contain uncountably many objects.

Remark

Both proofs are simple in terms of contrapositive.
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Example: cardinality of [0, 1]

Definition

For x ∈ R, the fractional part of x, denoted {x}, is defined as
x− bxc. Note that 0 ≤ {x} < 1 for all x ∈ R.

Example

Given that R is uncountable, prove that [0, 1] is uncountable too.

Proof.

We consider the function x 7→ {x} defined on R. It’s range is
[0, 1). Note that for each a ∈ [0, 1), the preimage of a is
{a+ k | k ∈ Z}, which is countable. If [0, 1) is countable too, then
R is the union of countably many preimages, so a union of
countably many countable sets, then R is countable, a
contradiction! Hence [0, 1) is uncountable, so is [0, 1].
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Example: positions for interns

Example

Suppose there is one internship position in each of the following
three departments of a company: marketing, technology and
management and the HR chief needs to select one student for each
department. There are 5 college students to select from. How
many possible arrangements are there?

Solution

We apply the multiplication rule. We determine the selection of
marketing, then technology, and finally management. There are 5
ways to select the intern for marketing, and then 4 ways for
technology and 3 ways for management. So in total 5 · 4 · 3 = 60
arrangements.

Bo Lin
Math 2603 - Lecture 14 Section 6.3 & 7.1 Pigeonhole Principle and permutations



The principle
Alternative Forms

Permutations

Example: positions for interns

Example

Suppose there is one internship position in each of the following
three departments of a company: marketing, technology and
management and the HR chief needs to select one student for each
department. There are 5 college students to select from. How
many possible arrangements are there?

Solution

We apply the multiplication rule. We determine the selection of
marketing, then technology, and finally management.

There are 5
ways to select the intern for marketing, and then 4 ways for
technology and 3 ways for management. So in total 5 · 4 · 3 = 60
arrangements.

Bo Lin
Math 2603 - Lecture 14 Section 6.3 & 7.1 Pigeonhole Principle and permutations



The principle
Alternative Forms

Permutations

Example: positions for interns

Example

Suppose there is one internship position in each of the following
three departments of a company: marketing, technology and
management and the HR chief needs to select one student for each
department. There are 5 college students to select from. How
many possible arrangements are there?

Solution

We apply the multiplication rule. We determine the selection of
marketing, then technology, and finally management. There are 5
ways to select the intern for marketing, and then 4 ways for
technology and 3 ways for management. So in total 5 · 4 · 3 = 60
arrangements.

Bo Lin
Math 2603 - Lecture 14 Section 6.3 & 7.1 Pigeonhole Principle and permutations



The principle
Alternative Forms

Permutations

Permutations

Definition

A permutation of a set of objects is an ordering of the objects in
a row.

Proposition

For any integer n ≥ 1, the number of permutations of a set with n
elements is n!.

The proof is just an application of the multiplication rule.
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Permutations of Selected Elements

A more general case is the permutations of selected elements.

Definition

An r-permutation of a set of n elements is an ordered selection of
r elements taken from the set of n elements. The number of
r-permutations of a set of n elements is denoted P (n, r).

Example

P (n, 1) = n, P (n, n) = n! for each positive integer n.
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Exercise: license plates

Example

Suppose in a state, each license plate of vehicles is a sequence of
three English letters followed by four number digits. How many
license plates are possible in which all letters and digits are
distinct?

Solution

First we apply the multiplication rule. We determine the letters
first and then the digits. For the letters, we select the first one,
which has 26 choices. For the second letter, it could be anything
but the first letter, so it has 26− 1− 25 choices. And the third
letter has 24 choices. Similarly, the four digits have 10, 9, 8, 7
choices in total. So the answer is

P (26, 3) · P (10, 4) = 26 · 25 · 24 · 10 · 9 · 8 · 7 = 78, 624, 000.
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Formula of P (n, r)

Theorem

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1) =
n!

(n− r)!
.

Proof.

We apply the multiplication rule. There are n choices for the first
element, then n− 1 choices for the second element, and so on. As
for the last element, it could be anything but the previously chosen
r − 1 elements, so it has n− (r − 1) choices. Then we have the
above formula.
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Example: evaluate P (n, r)

Example

Evaluate P (5, 3) and P (6, 3).

Solution

P (5, 3) = 5!
(5−3)! =

120
2 = 60. P (6, 3) = 6!

(6−3)! =
720
6 = 120.
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Homework Assignment #8 - today

Section 6.3 Exercise 6, 9, 12,
30.
Section 7.1 Exercise 4, 9, 15.
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