Math 2603 - Lecture 16 Section 7.3 & 7.4 Probability

Bo Lin

October 17th, 2019

About midsemester survey

Main concerns

- Quizzes are too hard
- Quizzes are not very related to HW and lecture
- Examples in lecture are too few and too easy
- Office hour time is bad
- Homework solutions contain error

Main concerns

- Quizzes are too hard
- Quizzes are not very related to HW and lecture
- Examples in lecture are too few and too easy
- Office hour time is bad
- Homework solutions contain error

Remark

I promise that I will definitely curve your quiz grades in the end, to make sure that the average is about 80%.

Main Praises

- Lecture slides are helpful
- Answers on Piazza are clear
- Midterm #1 is fair

Main Praises

- Lecture slides are helpful
- Answers on Piazza are clear
- Midterm #1 is fair

Remark

I will continue on these efforts.

Elementary Probability

Remark

Without any preliminary theory, you may do some calculations about probability.

Remark

Without any preliminary theory, you may do some calculations about probability.

Example

• The probability that 5 appears when a fair die is rolled is

Remark

Without any preliminary theory, you may do some calculations about probability.

Example

• The probability that 5 appears when a fair die is rolled is $\frac{1}{6}$.

Remark

Without any preliminary theory, you may do some calculations about probability.

Example

- The probability that 5 appears when a fair die is rolled is $\frac{1}{6}$.
- The probability that an odd number appears when a fair die is rolled is

Remark

Without any preliminary theory, you may do some calculations about probability.

Example

- The probability that 5 appears when a fair die is rolled is $\frac{1}{6}$.
- The probability that an odd number appears when a fair die is rolled is $\frac{3}{6} = \frac{1}{2}$.

Remark

Without any preliminary theory, you may do some calculations about probability.

Example

- The probability that 5 appears when a fair die is rolled is $\frac{1}{6}$.
- The probability that an odd number appears when a fair die is rolled is $\frac{3}{6} = \frac{1}{2}$.

Example

A fair coin is tossed 8 times. What is the probability of getting 5 heads and 3 tails?

Example

A fair coin is tossed 8 times. What is the probability of getting 5 heads and 3 tails?

Solution

The number of possible outcomes of the 8 tosses is $2^8 = 256$.

Example

A fair coin is tossed 8 times. What is the probability of getting 5 heads and 3 tails?

Solution

The number of possible outcomes of the 8 tosses is $2^8 = 256$. The number of possible outcomes with 5 heads is the number of 5-combinations of 8 elements, which is

$$\binom{8}{5} = \binom{8}{3} = \frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1} = \frac{8 \cdot 7 \cdot 6}{6} = 56.$$

Example

A fair coin is tossed 8 times. What is the probability of getting 5 heads and 3 tails?

Solution

The number of possible outcomes of the 8 tosses is $2^8 = 256$. The number of possible outcomes with 5 heads is the number of 5-combinations of 8 elements, which is

$$\binom{8}{5} = \binom{8}{3} = \frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1} = \frac{8 \cdot 7 \cdot 6}{6} = 56.$$

So the probability is $\frac{56}{256} = \frac{7}{32}$.

What in common about these examples

Remark

They are all related to gambling, which was the motivation of probability theory back in 17th century.

What in common about these examples

Remark

They are all related to gambling, which was the motivation of probability theory back in 17th century.

Remark

In these examples, all possible outcomes are **equally likely** to happen. This property enables a simple computation of the probability.

The definition

Definition

A set S of possible outcomes is called the **sample space** of an **experiment**. An **event** is a subset A of the sample space. The **probability** of event A, denoted as P(A), measures how likely the event A will happen. More precisely, how likely any possible outcome in the subset A will happen.

The definition

Definition

A set S of possible outcomes is called the **sample space** of an **experiment**. An **event** is a subset A of the sample space. The **probability** of event A, denoted as P(A), measures how likely the event A will happen. More precisely, how likely any possible outcome in the subset A will happen.

Definition

If all possible outcomes in a finite sample space S are equally likely to happen, then for any event $A \subset S$, we have

$$P(A) = \frac{|A|}{|S|}.$$

Remark

The previous formula is the key in probability theory. With it, we simply need to do the following 4 steps to compute probabilities:

- lacktriangle Find sample space S with equally likely possible outcomes.
- ② Count the cardinality |S| of S.
- **③** For a given event $A \subset S$, count the cardinality |A| of A.
- **3** Compute $\frac{|A|}{|S|}$.

Remark

The previous formula is the key in probability theory. With it, we simply need to do the following 4 steps to compute probabilities:

- lacktriangle Find sample space S with equally likely possible outcomes.
- ② Count the cardinality |S| of S.
- **③** For a given event $A \subset S$, count the cardinality |A| of A.
- \bigcirc Compute $\frac{|A|}{|S|}$.

Remark

Usually it's easy to find S and compute |S|, while sometimes you need to make sure that the possible outcomes are indeed equally likely.

Remark

The previous formula is the key in probability theory. With it, we simply need to do the following 4 steps to compute probabilities:

- lacktriangle Find sample space S with equally likely possible outcomes.
- ② Count the cardinality |S| of S.
- **③** For a given event $A \subset S$, count the cardinality |A| of A.
- \bigcirc Compute $\frac{|A|}{|S|}$.

Remark

Usually it's easy to find S and compute |S|, while sometimes you need to make sure that the possible outcomes are indeed equally likely. Then the essential step is to find |A|.

Remark

The previous formula is the key in probability theory. With it, we simply need to do the following 4 steps to compute probabilities:

- lacktriangle Find sample space S with equally likely possible outcomes.
- ② Count the cardinality |S| of S.
- **③** For a given event $A \subset S$, count the cardinality |A| of A.
- \bigcirc Compute $\frac{|A|}{|S|}$.

Remark

Usually it's easy to find S and compute |S|, while sometimes you need to make sure that the possible outcomes are indeed equally likely. Then the essential step is to find |A|. Generally speaking, elementary probability problems are just counting problems.

Example

A committee of 5 people is randomly chosen from 4 men and 6 women. Find the probability of the following events:

- Exactly 4 women are on the committee.
- At least 4 women are on the committee.

Example

A committee of 5 people is randomly chosen from 4 men and 6 women. Find the probability of the following events:

- Exactly 4 women are on the committee.
- At least 4 women are on the committee.

Solution

S consists of all 5-combinations of the 4+6=10 people, so $|S|={10 \choose 5}=252$. (to be continued)

Solution

S consists of all 5-combinations of the 4+6=10 people, so $|S|={10 \choose 5}=252.$

Solution

S consists of all 5-combinations of the 4+6=10 people, so $|S|=\binom{10}{5}=252$. (1) Let A be the event. It suffices to count |A|. If there are exactly 4 women on the committee, then the remaining 1 member must be a man. So $|A|=\binom{6}{4}\cdot\binom{4}{1}=15\cdot 4=60$.

Solution

S consists of all 5-combinations of the 4+6=10 people, so $|S|=\binom{10}{5}=252$. (1) Let A be the event. It suffices to count |A|. If there are exactly 4 women on the committee, then the remaining 1 member must be a man. So $|A|=\binom{6}{4}\cdot\binom{4}{1}=15\cdot 4=60$. And the probability is $\frac{|A|}{|S|}=\frac{60}{252}=\frac{5}{21}$.

Solution

S consists of all 5-combinations of the 4+6=10 people, so $|S|=\binom{10}{5}=252$. (1) Let A be the event. It suffices to count |A|. If there are exactly 4 women on the committee, then the remaining 1 member must be a man. So $|A|=\binom{6}{4}\cdot\binom{4}{1}=15\cdot 4=60$. And the probability is $\frac{|A|}{|S|}=\frac{60}{252}=\frac{5}{21}$.

(2) Let B be the event. There are two cases: 4 women are on the committee or 5 women are on the committee. By the addition rule, |B| is the sum of possible outcomes in both cases, which is

$$\binom{6}{4}\binom{4}{1} + \binom{6}{5}\binom{4}{0} = 60 + 6 = 66.$$

Hence the probability is $\frac{|B|}{|S|}=\frac{66}{252}=\frac{11}{42}.$

Example

A box contains 30 tickets, each labeled with distinct integers from 1 to 30 inclusive. Find the probability that a ticket drawn randomly from the box bears the number that is divisible by 3 or 5.

Example

A box contains 30 tickets, each labeled with distinct integers from 1 to 30 inclusive. Find the probability that a ticket drawn randomly from the box bears the number that is divisible by 3 or 5.

Solution

The sample space S has cardinality 30. The event A is $\{x \in \mathbb{N} \mid x \leq 30, 3 \mid x \text{ or } 5 \mid x\}$.

Example

A box contains 30 tickets, each labeled with distinct integers from 1 to 30 inclusive. Find the probability that a ticket drawn randomly from the box bears the number that is divisible by 3 or 5.

Solution

The sample space S has cardinality 30. The event A is $\{x \in \mathbb{N} \mid x \leq 30, 3 \mid x \text{ or } 5 \mid x\}$. By the Principle of Inclusion-Exclusion,

$$|A| = \left| \frac{30}{3} \right| + \left| \frac{30}{5} \right| - \left| \frac{30}{3 \cdot 5} \right| = 10 + 6 - 2 = 14.$$

Hence the probability is $\frac{|A|}{|S|} = \frac{14}{30} = \frac{7}{15}$.

Properties of probability

Theorem

Let S be the finite sample space of some experiment.

① If A is an event, then $0 \le P(A) \le 1$. In particular, $P(\emptyset) = 0, P(S) = 1$.

Properties of probability

Theorem

Let S be the finite sample space of some experiment.

- ① If A is an event, then $0 \le P(A) \le 1$. In particular, $P(\emptyset) = 0, P(S) = 1$.
- ② If A is an event and A^c is its complement $(A^c = S \setminus A)$, then $P(A^c) = 1 P(A)$.

Properties of probability

Theorem

Let S be the finite sample space of some experiment.

- ① If A is an event, then $0 \le P(A) \le 1$. In particular, $P(\emptyset) = 0, P(S) = 1$.
- ② If A is an event and A^c is its complement $(A^c = S \setminus A)$, then $P(A^c) = 1 P(A)$.
- If A and B are events, then $P(A \cup B) = P(A) + P(B) P(A \cap B).$

Corollary of Principle of Inclusion-Exclusion

Theorem

Let S be the finite sample space of some experiment and A_1, A_2, \cdots, A_n be events, then

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \left[(-1)^{i+1} \cdot \sum_{1 \le j_1 < \dots < j_i \le n} P\left(\bigcap_{k=1}^{i} A_{j_k}\right) \right].$$

Corollary of Principle of Inclusion-Exclusion

Theorem

Let S be the finite sample space of some experiment and A_1, A_2, \cdots, A_n be events, then

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \left[(-1)^{i+1} \cdot \sum_{1 \le j_1 < \dots < j_i \le n} P\left(\bigcap_{k=1}^{i} A_{j_k}\right) \right].$$

Corollary

Let S be the finite sample space of some experiment and A_1, A_2, \cdots, A_n be pairwise mutually exclusive events. Then

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i).$$

Probability Theory

Remark

Suppose S is a sample space containing possible outcomes x_1, \ldots, x_n , not necessarily equally likely. Then what property must the values $P(x_i) (= P(\{x_i\}))$ satisfy?

Remark

Suppose S is a sample space containing possible outcomes x_1, \ldots, x_n , not necessarily equally likely. Then what property must the values $P(x_i)(=P(\{x_i\}))$ satisfy?

•
$$0 \le P(x_i) \le 1$$
;

Remark

Suppose S is a sample space containing possible outcomes x_1, \ldots, x_n , not necessarily equally likely. Then what property must the values $P(x_i)(=P(\{x_i\}))$ satisfy?

- $0 \le P(x_i) \le 1$;
- $\sum_{i=1}^{n} P(x_i) = 1.$

Remark

Suppose S is a sample space containing possible outcomes x_1, \ldots, x_n , not necessarily equally likely. Then what property must the values $P(x_i)(=P(\{x_i\}))$ satisfy?

- $0 \le P(x_i) \le 1$;

Remark

These conditions lead us to the formal definition of probability.

Formal definition of probability

Definition

Suppose S is a sample space containing possible outcomes x_1, \ldots, x_n , not necessarily equally likely. If $P: S \to \mathbb{R}$ is a real-valued function on the sample space S satisfying

•
$$0 \le P(x_i) \le 1$$
;

Formal definition of probability

Definition

Suppose S is a sample space containing possible outcomes x_1, \ldots, x_n , not necessarily equally likely. If $P: S \to \mathbb{R}$ is a real-valued function on the sample space S satisfying

- $0 \le P(x_i) \le 1$;

then the **probability** P(A) of any event A is

$$\sum_{x_i \in A} P(x_i).$$

Formal definition of probability

Definition

Suppose S is a sample space containing possible outcomes x_1, \ldots, x_n , not necessarily equally likely. If $P: S \to \mathbb{R}$ is a real-valued function on the sample space S satisfying

- $0 \le P(x_i) \le 1$;

then the **probability** P(A) of any event A is

$$\sum_{x_i \in A} P(x_i).$$

Remark

Now we can deal with outcomes with unequal possibilities.

Example: biased die

Example

A biased die has $P(1)=\frac{1}{3}$, $P(2)=P(3)=\frac{1}{12}$, and $P(4)=P(5)=P(6)=\frac{1}{6}$ (here we write P(x) for $P(\{x\})$). If the die is rolled once, find the probability that

- an odd number appears;
- the number that appears is less than 3.

Example: biased die

Example

A biased die has $P(1)=\frac{1}{3}$, $P(2)=P(3)=\frac{1}{12}$, and $P(4)=P(5)=P(6)=\frac{1}{6}$ (here we write P(x) for $P(\{x\})$). If the die is rolled once, find the probability that

- an odd number appears;
- the number that appears is less than 3.

Solution

(1) The event is $\{1,3,5\}$, so the probability is

$$P(1) + P(3) + P(5) = \frac{1}{3} + \frac{1}{12} + \frac{1}{6} = \frac{7}{12}$$
.

Example: biased die

Example

A biased die has $P(1)=\frac{1}{3}$, $P(2)=P(3)=\frac{1}{12}$, and $P(4)=P(5)=P(6)=\frac{1}{6}$ (here we write P(x) for $P(\{x\})$). If the die is rolled once, find the probability that

- an odd number appears;
- the number that appears is less than 3.

Solution

- (1) The event is $\{1,3,5\}$, so the probability is
- $P(1) + P(3) + P(5) = \frac{1}{3} + \frac{1}{12} + \frac{1}{6} = \frac{7}{12}.$
- (2) The event is $\{1,2\}$, so the probability is

$$P(1) + P(2) = \frac{1}{3} + \frac{1}{12} = \frac{5}{12}.$$

The conditional probability

Remark

In practice, we might know extra information that rules out some possible outcomes from the sample space, and we still want to compute the probability of certain event.

The conditional probability

Remark

In practice, we might know extra information that rules out some possible outcomes from the sample space, and we still want to compute the probability of certain event.

Definition (Conditional probability)

Let A and B be events with P(A) > 0. The conditional probability of B given A, denoted $P(B \mid A)$, is $\frac{P(B \cap A)}{P(A)}$.

The conditional probability

Remark

In practice, we might know extra information that rules out some possible outcomes from the sample space, and we still want to compute the probability of certain event.

Definition (Conditional probability)

Let A and B be events with P(A) > 0. The conditional probability of B given A, denoted $P(B \mid A)$, is $\frac{P(B \cap A)}{P(A)}$.

Remark

Interpretation: given A, then we have a new sample space A, and a new event $B \cap A$.

Example

A fair coin is tossed 5 times. Find the probability of obtaining at most 1 head, given that at least 1 head appears.

Example

A fair coin is tossed 5 times. Find the probability of obtaining at most 1 head, given that at least 1 head appears.

Solution

We need to find $P(B \mid A)$, where A is the event "at least 1 head appears" and B is the event "obtaining at most 1 head", then $B \cap A$ is "obtaining exactly 1 head".

Example

A fair coin is tossed 5 times. Find the probability of obtaining at most 1 head, given that at least 1 head appears.

Solution

We need to find $P(B \mid A)$, where A is the event "at least 1 head appears" and B is the event "obtaining at most 1 head", then $B \cap A$ is "obtaining exactly 1 head". $P(B \cap A) = \binom{5}{1}/2^5 = \frac{5}{32}$. And A^c is the event "no head appears", so

$$P(A) = 1 - P(A^c) = 1 - \frac{\binom{5}{0}}{2^5} = \frac{31}{32}.$$

Example

A fair coin is tossed 5 times. Find the probability of obtaining at most 1 head, given that at least 1 head appears.

Solution

We need to find $P(B \mid A)$, where A is the event "at least 1 head appears" and B is the event "obtaining at most 1 head", then $B \cap A$ is "obtaining exactly 1 head". $P(B \cap A) = \binom{5}{1}/2^5 = \frac{5}{32}$. And A^c is the event "no head appears", so

$$P(A) = 1 - P(A^c) = 1 - \frac{\binom{5}{0}}{2^5} = \frac{31}{32}$$
. Then $P(B \mid A) = \frac{5}{31}$.

Example

A fair coin is tossed 5 times. Find the probability of obtaining at most 1 head, given that at least 1 head appears.

Solution

We need to find $P(B \mid A)$, where A is the event "at least 1 head appears" and B is the event "obtaining at most 1 head", then $B \cap A$ is "obtaining exactly 1 head". $P(B \cap A) = \binom{5}{1}/2^5 = \frac{5}{32}$. And A^c is the event "no head appears", so

$$P(A) = 1 - P(A^c) = 1 - \frac{\binom{5}{0}}{2^5} = \frac{31}{32}$$
. Then $P(B \mid A) = \frac{5}{31}$.

Corollary

If S consists of equally likely possible outcomes and $P(B \mid A)$ is well-defined, then $P(B \mid A) = \frac{|B \cap A|}{|A|}$.

Independent events

Remark

Recall the multiplication rule, the steps are independent to each other. We have an analogue in probability theory.

Independent events

Remark

Recall the multiplication rule, the steps are independent to each other. We have an analogue in probability theory.

Definition

Events A and B are independent if $P(A \cap B) = P(A) \cdot P(B)$.

Independent events

Remark

Recall the multiplication rule, the steps are independent to each other. We have an analogue in probability theory.

Definition

Events A and B are independent if $P(A \cap B) = P(A) \cdot P(B)$.

Proposition

Suppose A and B are events with P(A)>0. They are independent if and only if $P(B\mid A)=P(B)$. In other words, the extra information of A does not affect the likelihood of B.

Example

Buymore Supermarket orders light bulbs from two suppliers, AA Electronics and AAA Electronics. It buys 30% of its light bulbs from AA and 70% from AAA. 2% of the light bulbs bought from AA are defective, while 3% of the light bulbs bought from AAA are defective. Find the probability that a randomly selected light bulb

- was purchased from AA and is defective;
- is defective.

Solution

Let A be the event "the light bulbs was bought from AA", B be the event "the light bulbs was bought from AAA", and C be the event "the light bulbs is defective". We are given that P(A) = 0.3, P(B) = 0.7, and $P(C \mid A) = 0.02, P(C \mid B) = 0.03$.

Solution

Let A be the event "the light bulbs was bought from AA", B be the event "the light bulbs was bought from AAA", and C be the event "the light bulbs is defective". We are given that P(A)=0.3, P(B)=0.7, and $P(C\mid A)=0.02, P(C\mid B)=0.03$. (1) This is $P(A\cap C)$, which is $P(A)\cdot P(C|A)=0.3\cdot 0.02=0.006=0.6\%$.

Solution

Let A be the event "the light bulbs was bought from AA", B be the event "the light bulbs was bought from AAA", and C be the event "the light bulbs is defective". We are given that

$$P(A) = 0.3, P(B) = 0.7, \text{ and } P(C \mid A) = 0.02, P(C \mid B) = 0.03.$$

- (1) This is $P(A \cap C)$, which is
- $P(A) \cdot P(C|A) = 0.3 \cdot 0.02 = 0.006 = 0.6\%.$
- (2) This is P(C). Since A and B are complementary to each other, we have $C = (C \cap A) \cup (C \cap B)$,

Solution

Let A be the event "the light bulbs was bought from AA", B be the event "the light bulbs was bought from AAA", and C be the event "the light bulbs is defective". We are given that

$$P(A) = 0.3, P(B) = 0.7, \text{ and } P(C \mid A) = 0.02, P(C \mid B) = 0.03.$$

- (1) This is $P(A \cap C)$, which is
- $P(A) \cdot P(C|A) = 0.3 \cdot 0.02 = 0.006 = 0.6\%.$
- (2) This is P(C). Since A and B are complementary to each other, we have $C=(C\cap A)\cup (C\cap B)$, So

$$P(C) = P(C \cap A) + P(C \cap B)$$

$$= P(A)P(C \mid A) + P(B)P(C \mid B)$$

$$= 0.3 \cdot 0.02 + 0.7 \cdot 0.03$$

$$= 0.027 = 2.7\%.$$

A useful formula

Proposition

If A_1, A_2, \cdots, A_n are mutually exclusive events with positive probability and their union is the entire sample space, then for any event X we have

$$P(X) = \sum_{i=1}^{n} P(A_i)P(X \mid A_i).$$

A useful formula

Proposition

If A_1, A_2, \cdots, A_n are mutually exclusive events with positive probability and their union is the entire sample space, then for any event X we have

$$P(X) = \sum_{i=1}^{n} P(A_i)P(X \mid A_i).$$

Proof.

BY the property of A_1, A_2, \dots, A_n , we know that $X \cap A_i$'s are pairwise disjoint and their union is X.

So
$$P(X) = \sum_{i=1}^{n} P(X \cap A_i)$$
, and for each i , we have $P(X \cap A_i) = P(A_i)P(X \mid A_i)$.

Bayes's formula

The following formula is fundamental for inference.

Theorem (Bayes's formula)

Suppose events A_1,A_2,\cdots,A_n are mutually exclusive and $\bigcup_{i=1}^n A_i$ is the sample space S and $P(A_i)>0$ for all i. For any event X with P(X)>0, we have

$$P(A_j \mid X) = \frac{P(A_j)P(X \mid A_j)}{P(X)},$$

where

$$P(X) = \sum_{i=1}^{n} P(A_i)P(X \mid A_i).$$

Homework Assignment #9

Section 7.3 Exercise 4(a)(c), 6(e), 13(b)(c), 25(a). Section 7.4 Exercise 1(a), 4, 10(a)(d), 14, 20.