
Combinations with repeated elements
Permutations with repeated elements

Derangements

Math 2603 - Lecture 17
Section 7.5 & 7.6 Repetitions and derangements

Bo Lin

October 22nd, 2019

Bo Lin
Math 2603 - Lecture 17 Section 7.5 & 7.6 Repetitions and derangements



Combinations with repeated
elements



Combinations with repeated elements
Permutations with repeated elements

Derangements

Motivation: unordered selection with repetitions

So far we introduced ordered and unordered selections of distinct
elements from a set. But in practice, we may need to select an
element more than once.

A fair die is rolled 5 times, the number of unordered outcomes.

There are 10 different types of bagels available at Dunkin
Donuts, the number of ways to buy 6 bagels.

There are 13 denominations in a deck of playing cards and 3
cards are drawn, the number of unordered outcomes about
their denominations.

We need a systematic method for counting all these quantities.
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General model: objects in the boxes

Remark

A general model of all these examples is: the number of ways to
put r identical objects into n distinct (labeled) boxes.

Example

Example revisited:

5 rolls distributed into 6 distinct outcomes - r = 5, n = 6.

6 bagels bought from 10 distinct types - r = 6, n = 10.

3 drawn cards from 13 distinct denominations - r = 3, n = 13.

Remark

To distinguish objects and boxes, the key is whether they are
identical (unordered) or not.
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The formula

Theorem

The number of ways to put r identical objects into n distinct boxes
is (

n+ r − 1

r

)
=

(
n+ r − 1

n− 1

)
.

Remark

Feel free to directly apply this formula. The textbook does not
prove it, but I will explain two different proofs, which provide
different perspectives to understand it.
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Equivalent characterizations

Proposition

The following sets have the same cardinality:

(1) The set of all ways to put r identical objects into n distinct boxes.

(2) {(x1, x2, . . . , xn) ∈ Zn | xi ≥ 0,
∑n

i=1 xi = r}.
(3) {(y1, y2, . . . , yn) ∈ Zn | 0 ≤ y1 ≤ y2 ≤ · · · ≤ yn = r}.
(4) {(z1, z2, . . . , zn) ∈ Nn |

∑n
i=1 zi = r + n}.

(5) {(w1, w2, . . . , wn−1) ∈ Nn−1 | 1 ≤ w1 < w2 < · · · < wn−1 ≤
n+ r − 1}.

Proof.

(1) and (2): let xi be the numbers of objects in the i-th box. (2)
and (3): let yi =

∑i
j=1 xj . (2) and (4): let zi = xi + 1, then

zi ∈ N. (3) and (5): will prove in a while.
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An illustration

Suppose r = 5, n = 6. The five rolls of the die are 2, 6, 3, 3, 5. The
elements in the five versions are:

(1) Unordered selection 2, 3, 3, 5, 6.

(2) (0, 1, 2, 0, 1, 1) - ith entry is the number of appearance of i
among the five rolls;

(3) (0, 0 + 1, 0 + 1 + 2, 0 + 1 + 2 + 0, 0 + 1 + 2 + 0 + 1, 0 + 1 +
2 + 0 + 1 + 1) = (0, 1, 3, 3, 4, 5);

(4) (1, 2, 3, 1, 2, 2);

(5) (0 + 1, 1 + 2, 3 + 3, 3 + 4, 4 + 5) = (1, 3, 6, 7, 9).
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Stars and bars method

The characterization (4) leads to the “star and bars” method.

Suppose we have n+ r identical stars arranged in a row.

? ? ? ? ? ? ?

Each n tuple (z1, z2, . . . , zn) in the set corresponds to a unique
way to divide these stars into n parts, where each part contains at
least one star. We can put n− 1 bars where each bar is between
two adjacent stars

? ? ? ? | ? | ? ?

How many places can we insert bars? n+ r − 1. In addition, we
can insert at most one bar at each place, so the number of ways to
insert bars is

(
n+r−1
n−1

)
, which equals

(
n+r−1

r

)
.
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A proof by bijection

We haven’t proved the equivalence of (3) and (5)

{(y1, y2, . . . , yn) ∈ Zn | 0 ≤ y1 ≤ y2 ≤ · · · ≤ yn = r}

{(w1, w2, . . . , wn−1) ∈ Nn−1 | 1 ≤ w1 < w2 < · · · < wn−1 ≤ n+r−1}.

Proof.

Note that we can ignore yn. Now let wi = yi + i for 1 ≤ i ≤ n− 1,
which establishes a bijection between the two sets.

Remark

The cardinality of (5) is apparently “n+ r − 1 choose n− 1”.
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Example: coins

Example

How many different collections of 10 coins can be made from
pennies, nickels, dimes and quarters?

Solution

Coins are unordered, so r is 10. Denominations are distinct, so n is
4. By the formula, the answer is

(
10+4−1
4−1

)
=
(
13
3

)
= 286.
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Example with constraints

Example

There are 5 different flavors of pizza slices available at our food
court. Suppose I need to buy 6 slices for my colleagues and I am
supposed to buy at least one slice of pepperoni pizza, how many
ways can I do it?

Solution

Since I need to buy at least one slice of pepperoni pizza, I simply
buy one slice first. Then the remaining 5 slices are arbitrary! So
essentially this is the case when r = n = 5, and the answer is(
9
4

)
= 126.
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Example: balls in 3 colors

Example

In how many ways can we put 6 identical red balls, 3 identical blue
balls and 2 identical white balls in a row?

Remark

If there are only 2 colors, the answer is simply a binomial
coefficient. What about 3 colors?

Solution

There are 6 + 3 + 2 = 11 positions in total. First we choose 6
positions for the red balls, we get

(
11
6

)
. Next we choose 3 positions

from the remaining 11− 6 = 5 positions for the blue balls, we get(
5
3

)
. Finally there is only one choice of white balls. The answer is(

11
6

)(
5
3

)
.
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Observing the pattern

Remark

In this example, all the numbers we have are
x1 = 6, x2 = 3, x3 = 2, and we get 11 = x1 + x2 + x3. What
about the answer in terms of them?

Remark

The answer is

(
11

6

)(
5

3

)
=

11!

6!(11− 6)!
· (11− 6)!

3!(11− 6− 3)!
=

(x1 + x2 + x3)!

x1!x2!x3!
.

Remark

This is not a coincidence and actually it is the punchline instead.
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The formula

Theorem

Suppose there are xi identical objects of the i-th type, 1 ≤ i ≤ n.
Then the number of ways to arrange all these objects in an ordered
row is

(
∑n

i=1 xi)!∏n
i=1 (xi!)

.

Proof.

Regard all objects as distinct, then there are (
∑n

i=1 xi)!
permutations in total. While for each above arrangement, for the
xi identical objects of the i-th type, there are xi! ways to rearrange
them. By the multiplication rule, there are

∏n
i=1 (xi!) permutations

of “distinct” objects that correspond to the same arrangement.
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Multinomial coefficients

Corollary

Suppose integers x1, x2, . . . , xn ≥ 0 and their sum is m. Then in
the expansion of (

∑n
i=1 ai)

m, the coefficient of the monomial∏n
i=1 a

xi
i is exactly

m!∏n
i=1 xi!

.

Remark

As a result,
(
∑n

i=1 xi)!∏n
i=1 xi!

are called multinomial coefficients.
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More example

Example

In how many ways can the letters of the word “rearrange” be
rearranged?

Solution

We keep track of the number of appearances of each letter. r
three times; both a and e twice; n and g once. So we have

3, 2, 2, 1, 1.

The answer is

(3 + 2 + 2 + 1 + 1)!

3!2!2!1!1!
=

9!

3!2!2!
=

9!

24
= 15, 120.
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Definition

Definition

A derangement of n distinct symbols that have some natural
order is a permutation in which no symbol is in its correct position.
The number of derangements of n distinct symbols is denoted Dn.

Example

All permutations of 1, 2, 3 are:

123, 132, 213, 231, 312, 321.

The only derangements are 231 and 312. Hence D3 = 2.

Question: what is the value of Dn?
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Solution using Inclusion-Exclusion

Solution

For 1 ≤ i ≤ n, let Ai be the set of all permutations on 1, 2, . . . , n
such that i is at the i-th position. Then

Dn = n!− |A1 ∪A2 ∪ · · · ∪An| .

Now by the Principle of Inclusion-Exclusion, we can evaluate:

|A1 ∪A2 ∪ · · · ∪An| =
n∑

i=1

(−1)i+1 ·
∑

j1<j2<...<ji

|Aj1 ∩ · · · ∩Aji |

.
Note that Aj1 ∩ · · · ∩Aji is the set of permutations with i
numbers at their own positions, and other numbers at arbitrary
positions. So the cardinality is (n− i)!.
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Solution using Inclusion-Exclusion

Solution

Then we have

Dn = n!−
n∑

i=1

(−1)i+1 ·
∑

j1<j2<...<ji

(n− i)!


= n!−

n∑
i=1

[
(−1)i+1 ·

(
n

i

)
· (n− i)!

]

= n!−
n∑

i=1

(−1)i+1n!

i!

= n!

n∑
i=2

(−1)i 1
i!
.
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Example of Dn

Example

D4 = 24 · ( 1
2! −

1
3! +

1
4!) = 12− 4 + 1 = 9.

Example

D5 = 120 · (12 −
1
6 + 1

24 −
1

120) = 60− 20 + 5− 1 = 44.

Bo Lin
Math 2603 - Lecture 17 Section 7.5 & 7.6 Repetitions and derangements



Combinations with repeated elements
Permutations with repeated elements

Derangements

Example of Dn

Example

D4 = 24 · ( 1
2! −

1
3! +

1
4!) = 12− 4 + 1 = 9.

Example

D5 = 120 · (12 −
1
6 + 1

24 −
1

120) = 60− 20 + 5− 1 = 44.

Bo Lin
Math 2603 - Lecture 17 Section 7.5 & 7.6 Repetitions and derangements



Combinations with repeated elements
Permutations with repeated elements

Derangements

Asymptotic behavior of Dn

Proposition

Dn

n!
=

n∑
i=2

(−1)i

i!
.

We have the following result from calculus:

Proposition

∞∑
i=2

(−1)i

i!
=

1

e
.

Corollary

When n is sufficiently large, there are about 1
e ≈ 37%

permutations are derangements.
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Homework Assignment #10 - today

Section 7.5 Exercise 5, 6(b), 9,
11(b).
Section 7.6 Exercise 4, 5(b), 8.
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