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Motivation

There are many examples of graphs in application that look like an
ordinary tree. For instance,

The hierarchy of an organization (company, schools, troops).

The folders in a computer system.

The evolutionary process of multiple species.

Remark

We have an abstraction of all these graphs, which is called trees.
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Definition

Definition

A tree is a connected graph without circuits.

Example

The following graphs are trees.
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Equivalent characterization

Remark

There are equivalent characterizations of trees.

Proposition

Let G be a graph. The following statements are equivalent.

(1) G is a tree;

(2) G is connected and acyclic (without cycles);

(3) between any two vertices of G, there is a unique path
connecting them.

Sketch of proof.

(1) → (2): cycles are circuits. (2) → (3): “connected” implies the
existence, “acyclic” implies at most one path. (3) → (1): By 10.1
Ex. 15, circuits contain cycles and a cycle implies two paths.
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Roots and leaves

Definition

A tree is rooted if it comes with a specified vertex called the root.

Remark

Rooted trees could be easily converted to directed graphs - the
directions of edges are given according to paths from the root to
all other vertices.

Remark

When we draw rooted trees, we usually put the root on top, and
all edges have directions from top to bottom.

Definition

A leaf is a vertex in trees with degree 1.
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Existence of leaf

Lemma

If G is a graph whose vertices all have degree at least 2, then G
contains a circuit.

Proof.

Since each vertex has degree at least 2, we can keep extend a
path, until we reach a vertex that we have already visited, and
then we end up with a circuit.

Corollary

Every tree has at least one leaf.

Bo Lin Math 2603 - Lecture 22 Section 12.1 & 12.2 Trees



Trees
Spanning Trees

Existence of leaf

Lemma

If G is a graph whose vertices all have degree at least 2, then G
contains a circuit.

Proof.

Since each vertex has degree at least 2, we can keep extend a
path, until we reach a vertex that we have already visited, and
then we end up with a circuit.

Corollary

Every tree has at least one leaf.

Bo Lin Math 2603 - Lecture 22 Section 12.1 & 12.2 Trees



Trees
Spanning Trees

Existence of leaf

Lemma

If G is a graph whose vertices all have degree at least 2, then G
contains a circuit.

Proof.

Since each vertex has degree at least 2, we can keep extend a
path, until we reach a vertex that we have already visited, and
then we end up with a circuit.

Corollary

Every tree has at least one leaf.

Bo Lin Math 2603 - Lecture 22 Section 12.1 & 12.2 Trees



Trees
Spanning Trees

Number of edges and vertices

Remark

Recall the previous example

What are the number of vertices and edges of the trees?

7
vertices, 6 edges; 6 vertices, 5 edges. This is not a coincidence.
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A theorem

Theorem

If a connected graph has n vertices, then it is a tree if and only if
it has exactly n− 1 edges.

Proof.

“Only if”: we apply strong induction on n. Base step: when
n = 2, it is trivial. Inductive step: suppose for 2 ≤ n ≤ m it is
true, consider n = m+ 1. Take a leaf from the tree, delete it and
the only edge incident to it. The remaining graph has m vertices
and it is still a tree. By the inductive hypothesis, the remaining
tree has m− 1 edges, so the original tree has m = (m+ 1)− 1
edges, the case of n = m+ 1 is proved. (to be continued)
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Proof

Proof.

“If”: it suffices to show that the graph does not contain a circuit.
If there is a circuit, then there is a cycle too. Delete one edge from
the cycle, the graph is still connected.

If the remaining graph still
has a circuit, we do the same thing again, until there is no more
circuit. Then we obtained a tree with n vertices, while we deleted
at least one edge, so the tree has at most n− 2 edge, a
contradiction to the “only if” part.
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Corollaries

Corollary

Every tree with at least two vertices has at least 2 leaves.

Proof.

If there is a unique leaf instead, the total sum of degrees is at least
2 · (n− 1) + 1 = 2n− 1 > 2n− 2 = 2 · |E|, a contradiction to
Euler’s formula.

Corollary

Any edge added to a tree must produce a cycle.

Proof.

The number of edges means that the new graph is no longer a tree,
but it is still connected, so it admits a circuit, and thus a cycle.
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Definition

Definition

A spanning tree of a connected graph G is a subgraph that is a
tree and includes all vertices of G. A minimal spanning tree of a
weighted graph is a spanning tree of least weight.

Remark

This concept is motivated from applications - for example, to
establish a postal network with least weight.
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Number of spanning trees

Remark

We would like to count the number of all spanning trees in the
given graph. This is solved by German physicist Gustav Kirchhoff
(1824-1887), which involves the adjacency matrix of a graph and
the cofactors of matrices. As a result, we skip the Kirchhoff’s
Theorem.

Remark

Instead we consider a special case - the number of all spanning
trees in Kn. Note that this is equivalent to the number of labeled
trees on n vertices.
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Cayley’s formula

Theorem

The number of labeled trees with n ≥ 2 vertices is nn−2.

Example

All labeled trees with
n = 2, 3, 4.
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An elegant proof

We introduce an elegant proof only using bijection - we count the
same quantity in two different ways and build the equality we want.

Proof.

We consider the number of ordered sequences of the n− 1 directed
edges of rooted labeled trees with n vertices. For example, if the
root is red, and two edges red− blue and red− green, then there
are P (2, 2) = 2! = 2 such ordered sequences of edges in this
labeled tree.

Suppose there are Tn distinct labeled trees with n
vertices. Fixing such a labeled tree, we need to choose a root, and
then arrange its n− 1 edges in an ordered sequence, so
n · (n− 1)! = n! ways to do it. And as a result, the total number is
n!Tn. (to be continued)
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An elegant proof

Proof.

There is another way to count the number. We begin with an
empty graph, and we choose the directed edges one by one.

Suppose we already chose n− k directed edges, the graph would
be a union of k rooted trees. For the next directed edge, its
starting vertex could be any of the n vertices, and its target can
only be one of the roots in the other k − 1 rooted trees. So in this
step, we have n(k− 1) choices. At the beginning k = n, in the end
k = 2 (when k = 1 we no longer need to choose another edge). So
the total number is

n∏
k=2

n(k − 1) = nn−1 · (n− 1)! = nn−2 · n!.

Hence Tn · n! = nn−2 · n!, Tn = nn−2.
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Homework Assignment #13 - today

Section 12.1 Exercise 1, 8, 16,
18, 24.
Section 12.2 Exercise 6, 8, 11.
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