Trees Spanning Trees

Math 2603 - Lecture 22 Section 12.1 & 12.2 Trees

Bo Lin

November 12th, 2019

Bo Lin Math 2603 - Lecture 22 Section 12.1 & 12.2 Trees

→ Ξ →

Trees

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

There are many examples of graphs in application that look like an ordinary tree. For instance,

- The hierarchy of an organization (company, schools, troops).
- The folders in a computer system.
- The evolutionary process of multiple species.

There are many examples of graphs in application that look like an ordinary tree. For instance,

- The hierarchy of an organization (company, schools, troops).
- The folders in a computer system.
- The evolutionary process of multiple species.

Remark

We have an abstraction of all these graphs, which is called trees.

Definition

Definition

A tree is a connected graph without circuits.

Bo Lin Math 2603 - Lecture 22 Section 12.1 & 12.2 Trees

э

• • = • • =

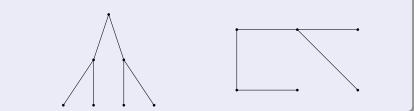
Definition

Definition

A tree is a connected graph without circuits.

Example

The following graphs are trees.



< ∃ > <

Remark

There are equivalent characterizations of trees.

▶ < Ξ > <</p>

Remark

There are equivalent characterizations of trees.

Proposition

Let \mathcal{G} be a graph. The following statements are equivalent.

- G is connected and acyclic (without cycles);
- between any two vertices of G, there is a unique path connecting them.

Remark

There are equivalent characterizations of trees.

Proposition

Let \mathcal{G} be a graph. The following statements are equivalent.

- G is a tree;
- G is connected and acyclic (without cycles);
- between any two vertices of G, there is a unique path connecting them.

Sketch of proof.

(1) ightarrow (2): cycles are circuits.

Remark

There are equivalent characterizations of trees.

Proposition

Let \mathcal{G} be a graph. The following statements are equivalent.

- \bigcirc \mathcal{G} is a tree;
- G is connected and acyclic (without cycles);
- between any two vertices of G, there is a unique path connecting them.

Sketch of proof.

(1) \rightarrow (2): cycles are circuits. (2) \rightarrow (3): "connected" implies the existence, "acyclic" implies at most one path.

20

Remark

There are equivalent characterizations of trees.

Proposition

Let \mathcal{G} be a graph. The following statements are equivalent.

- \bigcirc \mathcal{G} is a tree;
- G is connected and acyclic (without cycles);
- between any two vertices of G, there is a unique path connecting them.

Sketch of proof.

(1) \rightarrow (2): cycles are circuits. (2) \rightarrow (3): "connected" implies the existence, "acyclic" implies at most one path. (3) \rightarrow (1): By 10.1 Ex. 15, circuits contain cycles and a cycle implies two paths.

Roots and leaves

Definition

A tree is **rooted** if it comes with a specified vertex called the **root**.

э

• • = • • = •

Roots and leaves

Definition

A tree is **rooted** if it comes with a specified vertex called the **root**.

Remark

Rooted trees could be easily converted to directed graphs - the directions of edges are given according to paths from the root to all other vertices.

Roots and leaves

Definition

A tree is **rooted** if it comes with a specified vertex called the **root**.

Remark

Rooted trees could be easily converted to directed graphs - the directions of edges are given according to paths from the root to all other vertices.

Remark

When we draw rooted trees, we usually put the root on top, and all edges have directions from top to bottom.

Definition

A leaf is a vertex in trees with degree 1.

Existence of leaf

Lemma

If \mathcal{G} is a graph whose vertices all have degree at least 2, then \mathcal{G} contains a circuit.

→ < Ξ → <</p>

Existence of leaf

Lemma

If \mathcal{G} is a graph whose vertices all have degree at least 2, then \mathcal{G} contains a circuit.

Proof.

Since each vertex has degree at least 2, we can keep extend a path, until we reach a vertex that we have already visited, and then we end up with a circuit.

Existence of leaf

Lemma

If \mathcal{G} is a graph whose vertices all have degree at least 2, then \mathcal{G} contains a circuit.

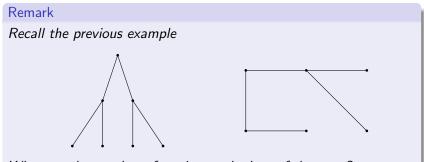
Proof.

Since each vertex has degree at least 2, we can keep extend a path, until we reach a vertex that we have already visited, and then we end up with a circuit.

Corollary

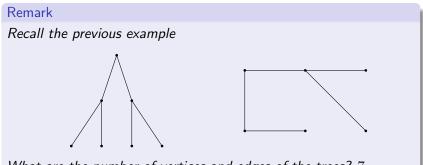
Every tree has at least one leaf.

Number of edges and vertices



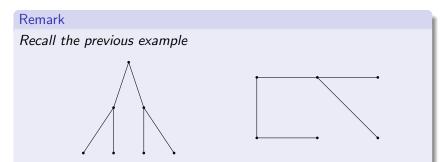
What are the number of vertices and edges of the trees?

Number of edges and vertices



What are the number of vertices and edges of the trees? 7 vertices, 6 edges;

Number of edges and vertices



What are the number of vertices and edges of the trees? 7 vertices, 6 edges; 6 vertices, 5 edges. This is not a coincidence.

Theorem

If a connected graph has n vertices, then it is a tree if and only if it has exactly n - 1 edges.

★ Ξ →

Theorem

If a connected graph has n vertices, then it is a tree if and only if it has exactly n - 1 edges.

Proof.

"Only if": we apply strong induction on n. Base step: when n = 2, it is trivial.

★ ∃ ▶ ∢

Theorem

If a connected graph has n vertices, then it is a tree if and only if it has exactly n - 1 edges.

Proof.

"Only if": we apply strong induction on n. Base step: when n = 2, it is trivial. Inductive step: suppose for $2 \le n \le m$ it is true, consider n = m + 1.

Theorem

If a connected graph has n vertices, then it is a tree if and only if it has exactly n - 1 edges.

Proof.

"Only if": we apply strong induction on n. Base step: when n = 2, it is trivial. Inductive step: suppose for $2 \le n \le m$ it is true, consider n = m + 1. Take a leaf from the tree, delete it and the only edge incident to it. The remaining graph has m vertices and it is still a tree.

Theorem

If a connected graph has n vertices, then it is a tree if and only if it has exactly n - 1 edges.

Proof.

"Only if": we apply strong induction on n. Base step: when n = 2, it is trivial. Inductive step: suppose for $2 \le n \le m$ it is true, consider n = m + 1. Take a leaf from the tree, delete it and the only edge incident to it. The remaining graph has m vertices and it is still a tree. By the inductive hypothesis, the remaining tree has m - 1 edges, so the original tree has m = (m + 1) - 1 edges, the case of n = m + 1 is proved. (to be continued)

伺き イヨト イヨ

Proof

Proof.

"If": it suffices to show that the graph does not contain a circuit. If there is a circuit, then there is a cycle too. Delete one edge from the cycle, the graph is still connected.

< ∃ > <

Proof

Proof.

"If": it suffices to show that the graph does not contain a circuit. If there is a circuit, then there is a cycle too. Delete one edge from the cycle, the graph is still connected. If the remaining graph still has a circuit, we do the same thing again, until there is no more circuit. Then we obtained a tree with n vertices, while we deleted at least one edge, so the tree has at most n-2 edge, a contradiction to the "only if" part.

Corollary

Every tree with at least two vertices has at least 2 leaves.

Bo Lin Math 2603 - Lecture 22 Section 12.1 & 12.2 Trees

э

Corollary

Every tree with at least two vertices has at least 2 leaves.

Proof.

If there is a unique leaf instead, the total sum of degrees is at least $2 \cdot (n-1) + 1 = 2n - 1 > 2n - 2 = 2 \cdot |\mathcal{E}|$, a contradiction to Euler's formula.

A 3 b

Corollary

Every tree with at least two vertices has at least 2 leaves.

Proof.

If there is a unique leaf instead, the total sum of degrees is at least $2 \cdot (n-1) + 1 = 2n - 1 > 2n - 2 = 2 \cdot |\mathcal{E}|$, a contradiction to Euler's formula.

Corollary

Any edge added to a tree must produce a cycle.

(b) (4) (2) (4)

Corollary

Every tree with at least two vertices has at least 2 leaves.

Proof.

If there is a unique leaf instead, the total sum of degrees is at least $2 \cdot (n-1) + 1 = 2n - 1 > 2n - 2 = 2 \cdot |\mathcal{E}|$, a contradiction to Euler's formula.

Corollary

Any edge added to a tree must produce a cycle.

Proof.

The number of edges means that the new graph is no longer a tree, but it is still connected, so it admits a circuit, and thus a cycle. \Box

Spanning Trees

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Definition

Definition

A spanning tree of a connected graph G is a subgraph that is a tree and includes all vertices of G. A minimal spanning tree of a weighted graph is a spanning tree of least weight.

★ ∃ → ★

Definition

Definition

A spanning tree of a connected graph G is a subgraph that is a tree and includes all vertices of G. A minimal spanning tree of a weighted graph is a spanning tree of least weight.

Remark

This concept is motivated from applications - for example, to establish a postal network with least weight.

Image: A image: A

Number of spanning trees

Remark

We would like to count the number of all spanning trees in the given graph. This is solved by German physicist Gustav Kirchhoff (1824-1887), which involves the **adjacency matrix** of a graph and the **cofactors** of matrices. As a result, we skip the Kirchhoff's Theorem.

Number of spanning trees

Remark

We would like to count the number of all spanning trees in the given graph. This is solved by German physicist Gustav Kirchhoff (1824-1887), which involves the **adjacency matrix** of a graph and the **cofactors** of matrices. As a result, we skip the Kirchhoff's Theorem.

Remark

Instead we consider a special case - the number of all spanning trees in \mathcal{K}_n . Note that this is equivalent to the number of labeled trees on n vertices.

F 4 3 F 4

Cayley's formula

Theorem

The number of labeled trees with $n \ge 2$ vertices is n^{n-2} .

Bo Lin Math 2603 - Lecture 22 Section 12.1 & 12.2 Trees

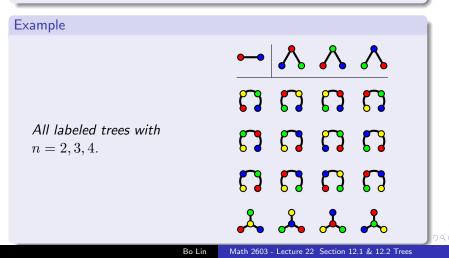
э

伺 ト イヨト イヨト

Cayley's formula

Theorem

The number of labeled trees with $n \ge 2$ vertices is n^{n-2} .



We introduce an elegant proof only using bijection - we count the same quantity in two different ways and build the equality we want.

Proof.

We consider the number of ordered sequences of the n-1 directed edges of rooted labeled trees with n vertices. For example, if the root is red, and two edges red - blue and red - green, then there are P(2,2) = 2! = 2 such ordered sequences of edges in this labeled tree.

We introduce an elegant proof only using bijection - we count the same quantity in two different ways and build the equality we want.

Proof.

We consider the number of ordered sequences of the n-1 directed edges of rooted labeled trees with n vertices. For example, if the root is red, and two edges red - blue and red - green, then there are P(2,2) = 2! = 2 such ordered sequences of edges in this labeled tree. Suppose there are T_n distinct labeled trees with n vertices. Fixing such a labeled tree, we need to choose a root, and then arrange its n-1 edges in an ordered sequence, so $n \cdot (n-1)! = n!$ ways to do it. And as a result, the total number is $n!T_n$. (to be continued)

「ヨト・ヨト・ヨ

An elegant proof

Proof.

There is another way to count the number. We begin with an empty graph, and we choose the directed edges one by one.

An elegant proof

Proof.

There is another way to count the number. We begin with an empty graph, and we choose the directed edges one by one. Suppose we already chose n - k directed edges, the graph would be a union of k rooted trees. For the next directed edge, its starting vertex could be any of the n vertices, and its target can only be one of the roots in the other k - 1 rooted trees. So in this step, we have n(k - 1) choices.

An elegant proof

Proof.

There is another way to count the number. We begin with an empty graph, and we choose the directed edges one by one. Suppose we already chose n - k directed edges, the graph would be a union of k rooted trees. For the next directed edge, its starting vertex could be any of the n vertices, and its target can only be one of the roots in the other k - 1 rooted trees. So in this step, we have n(k-1) choices. At the beginning k = n, in the end k = 2 (when k = 1 we no longer need to choose another edge). So the total number is

$$\prod_{k=2}^{n} n(k-1) = n^{n-1} \cdot (n-1)! = n^{n-2} \cdot n!.$$

Hence $T_n \cdot n! = n^{n-2} \cdot n!$, $T_n = n^{n-2}$.

Trees Spanning Trees

Homework Assignment #13 - today

Section 12.1 Exercise 1, 8, 16, 18, 24. Section 12.2 Exercise 6, 8, 11.

Bo Lin Math 2603 - Lecture 22 Section 12.1 & 12.2 Trees