
Minimal Spanning Tree Algorithms
Depth-First Search

Math 2603 - Lecture 23
Section 12.3 & 12.5 Minimal Spanning Trees &

Depth-First Search

Bo Lin

November 14th, 2019

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree
Algorithms

Minimal Spanning Tree Algorithms
Depth-First Search

The problem

As we introduced last time, given a weighted connected graph, we
would like to find a spanning tree with minimal weight.

Remark

There might be multiple minimal spanning trees. But usually we
only need to find one.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The problem

As we introduced last time, given a weighted connected graph, we
would like to find a spanning tree with minimal weight.

Remark

There might be multiple minimal spanning trees. But usually we
only need to find one.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Greedy algorithms

In 1950s, J.B. Kruskal and R.C. Prim both discovered algorithms
for finding minimal spanning tree.

Remark

In both algorithms, they produce one edge at a time, and
throughout the algorithm they make sure that the choices of edges
are optimal.

Remark

This kind of algorithms are called greedy algorithms. They are an
important type of algorithms, widely used in optimization problems.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Greedy algorithms

In 1950s, J.B. Kruskal and R.C. Prim both discovered algorithms
for finding minimal spanning tree.

Remark

In both algorithms, they produce one edge at a time, and
throughout the algorithm they make sure that the choices of edges
are optimal.

Remark

This kind of algorithms are called greedy algorithms. They are an
important type of algorithms, widely used in optimization problems.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Greedy algorithms

In 1950s, J.B. Kruskal and R.C. Prim both discovered algorithms
for finding minimal spanning tree.

Remark

In both algorithms, they produce one edge at a time, and
throughout the algorithm they make sure that the choices of edges
are optimal.

Remark

This kind of algorithms are called greedy algorithms. They are an
important type of algorithms, widely used in optimization problems.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Kruskal’s algorithm

Algorithm 1 Kruskal’s Algorithm

function Kruskal(G)
Input: a weighted connected graph G = (V, E) with |V| = n > 1
Output: a set S of the n − 1 edges of a minimal spanning tree
of G.

e1 ← an edge in E with minimal weight.
k ← 1
S ← {e1}
while k < n− 1 do

if ∃e ∈ E such that {e}∪S doesn’t contain a circuit then
ek+1 ← such an edge with minimal weight
S ← S ∪ {ek+1}
k ← k + 1

Return S

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

An Example

Find a minimal spanning tree:

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

An Example

We denote labels of edges in S by brown color.

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

An Example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

An Example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

An Example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

An Example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

An Example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

An Example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

An Example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

An Example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

An Example - the spanning tree

A

B

C D

E

FG

H

I J

4

3

3 7

10

5

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Prim’s algorithm

Algorithm 2 Prim’s Algorithm

function Prim(G)
Input: a weighted connected graph G = (V, E) with |V| = n > 1
Output: a set S of the n − 1 edges of a minimal spanning tree
of G.

v ← an arbitrary vertex in V
e← an edge incident to v with minimal weight
R← {v} . the set of covered vertices
S ← {e} . the set of edges in the tree
while |R| < n do

E ← {e ∈ E | e = {u, x}, u ∈ R, x /∈ R}
e = {u, x} ← an edge in E with minimal weight
R← R ∪ {x}
S ← S ∪ {e}

Return S
Bo Lin

Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The same example

We denote vertices in T by green color and edges in S by brown
color. We begin with vertex A.

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The same example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The same example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The same example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The same example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The same example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The same example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The same example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The same example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The same example

A

B

C D

E

FG

H

I J

7

8

8

4

11

10

3

4

3 7

10

5

9

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The spanning tree

A

B

C D

E

FG

H

I J

4

10

3

3 7

5

2

5 3

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Analysis of complexity

Proposition

Kruskal’s Theorem can be done with O(N logN) comparisons,
where N is the number of edges in the graph G.

Proposition

Prim’s Theorem can be done with O(n2) comparisons, where n is
the number of vertices in the graph G.

Remark

For proofs, see Exercise 12 and 13.

Remark

Which algorithm is better? It depends on the number of vertices
and edges. If the graph is sparse, Kruskal’s algorithm is better;
otherwise, Prim’s algorithm is better.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Analysis of complexity

Proposition

Kruskal’s Theorem can be done with O(N logN) comparisons,
where N is the number of edges in the graph G.

Proposition

Prim’s Theorem can be done with O(n2) comparisons, where n is
the number of vertices in the graph G.

Remark

For proofs, see Exercise 12 and 13.

Remark

Which algorithm is better? It depends on the number of vertices
and edges. If the graph is sparse, Kruskal’s algorithm is better;
otherwise, Prim’s algorithm is better.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Analysis of complexity

Proposition

Kruskal’s Theorem can be done with O(N logN) comparisons,
where N is the number of edges in the graph G.

Proposition

Prim’s Theorem can be done with O(n2) comparisons, where n is
the number of vertices in the graph G.

Remark

For proofs, see Exercise 12 and 13.

Remark

Which algorithm is better? It depends on the number of vertices
and edges. If the graph is sparse, Kruskal’s algorithm is better;
otherwise, Prim’s algorithm is better.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Correctness of Prim’s algorithm

Proof.

First, since each time we add a new vertex, the output is without
circuit. By the connectedness of the graph, all vertices will be
reached eventually (in other words, the algorithm will not terminate
until we get n− 1 edges). Hence the output is a spanning tree.

It suffices to prove that it has minimal weight. We prove that for
1 ≤ m ≤ n− 1, the subgraph consisting of the first m edges
obtained by the algorithm is a subgraph of a minimal spanning tree.
Basis step: when m = 1, suppose there is a minimal spanning tree
T not containing e1. Then T ∪ e1 contains a circuit, and the first
vertex v ∈ R is incident to another edge in the circuit. Now in T ,
replace this edge by e1, we get another spanning tree, and by the
choice of e1, the total weight is no greater. So the new tree is also
a minimal spanning tree, basis step is done. (to be continued)

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Correctness of Prim’s algorithm

Proof.

First, since each time we add a new vertex, the output is without
circuit. By the connectedness of the graph, all vertices will be
reached eventually (in other words, the algorithm will not terminate
until we get n− 1 edges). Hence the output is a spanning tree.
It suffices to prove that it has minimal weight. We prove that for
1 ≤ m ≤ n− 1, the subgraph consisting of the first m edges
obtained by the algorithm is a subgraph of a minimal spanning tree.

Basis step: when m = 1, suppose there is a minimal spanning tree
T not containing e1. Then T ∪ e1 contains a circuit, and the first
vertex v ∈ R is incident to another edge in the circuit. Now in T ,
replace this edge by e1, we get another spanning tree, and by the
choice of e1, the total weight is no greater. So the new tree is also
a minimal spanning tree, basis step is done. (to be continued)

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Correctness of Prim’s algorithm

Proof.

First, since each time we add a new vertex, the output is without
circuit. By the connectedness of the graph, all vertices will be
reached eventually (in other words, the algorithm will not terminate
until we get n− 1 edges). Hence the output is a spanning tree.
It suffices to prove that it has minimal weight. We prove that for
1 ≤ m ≤ n− 1, the subgraph consisting of the first m edges
obtained by the algorithm is a subgraph of a minimal spanning tree.
Basis step: when m = 1, suppose there is a minimal spanning tree
T not containing e1. Then T ∪ e1 contains a circuit, and the first
vertex v ∈ R is incident to another edge in the circuit.

Now in T ,
replace this edge by e1, we get another spanning tree, and by the
choice of e1, the total weight is no greater. So the new tree is also
a minimal spanning tree, basis step is done. (to be continued)

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Correctness of Prim’s algorithm

Proof.

First, since each time we add a new vertex, the output is without
circuit. By the connectedness of the graph, all vertices will be
reached eventually (in other words, the algorithm will not terminate
until we get n− 1 edges). Hence the output is a spanning tree.
It suffices to prove that it has minimal weight. We prove that for
1 ≤ m ≤ n− 1, the subgraph consisting of the first m edges
obtained by the algorithm is a subgraph of a minimal spanning tree.
Basis step: when m = 1, suppose there is a minimal spanning tree
T not containing e1. Then T ∪ e1 contains a circuit, and the first
vertex v ∈ R is incident to another edge in the circuit. Now in T ,
replace this edge by e1, we get another spanning tree, and by the
choice of e1, the total weight is no greater. So the new tree is also
a minimal spanning tree, basis step is done. (to be continued)

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Correctness of Prim’s algorithm

Proof.

Inductive step: suppose the statement is true when m = k for
some positive integer k ≤ n− 2, we consider the case m = k + 1.
The idea is almost the same. Suppose there is a minimal spanning
tree not containing ek+1, the (k + 1)-th edge added in Prim’s
algorithm, then adding ek+1 would produce a circuit.

Let Rk be
the set R after k steps, then |Rk| = k. Note that, there are at
least 2 edges connecting a vertex in Rk and a vertex not in Rk! So
other than ek+1, there is still another such edge in the circuit. If
we replace that edge by ek+1, the new subgraph is still a tree and
its weight is no greater, hence it is also a minimal spanning tree.
The inductive step is done.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Correctness of Prim’s algorithm

Proof.

Inductive step: suppose the statement is true when m = k for
some positive integer k ≤ n− 2, we consider the case m = k + 1.
The idea is almost the same. Suppose there is a minimal spanning
tree not containing ek+1, the (k + 1)-th edge added in Prim’s
algorithm, then adding ek+1 would produce a circuit. Let Rk be
the set R after k steps, then |Rk| = k. Note that, there are at
least 2 edges connecting a vertex in Rk and a vertex not in Rk! So
other than ek+1, there is still another such edge in the circuit. If
we replace that edge by ek+1, the new subgraph is still a tree and
its weight is no greater, hence it is also a minimal spanning tree.
The inductive step is done.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Motivating example

Example

Suppose you are in a labyrinth of rooms and one of the rooms
contains treasure. You have many markers to leave in rooms, how
do you search for the treasure?

Remark

It’s all about when you are at a location with multiple rooms to go
next, what to do. A straightforward idea is that always go to the
next room that one haven’t searched. And for rooms without
treasure, you can leave a marker to indicate that it’s already
searched.

Remark

This is the idea of depth-first search.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Motivating example

Example

Suppose you are in a labyrinth of rooms and one of the rooms
contains treasure. You have many markers to leave in rooms, how
do you search for the treasure?

Remark

It’s all about when you are at a location with multiple rooms to go
next, what to do.

A straightforward idea is that always go to the
next room that one haven’t searched. And for rooms without
treasure, you can leave a marker to indicate that it’s already
searched.

Remark

This is the idea of depth-first search.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Motivating example

Example

Suppose you are in a labyrinth of rooms and one of the rooms
contains treasure. You have many markers to leave in rooms, how
do you search for the treasure?

Remark

It’s all about when you are at a location with multiple rooms to go
next, what to do. A straightforward idea is that always go to the
next room that one haven’t searched. And for rooms without
treasure, you can leave a marker to indicate that it’s already
searched.

Remark

This is the idea of depth-first search.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Motivating example

Example

Suppose you are in a labyrinth of rooms and one of the rooms
contains treasure. You have many markers to leave in rooms, how
do you search for the treasure?

Remark

It’s all about when you are at a location with multiple rooms to go
next, what to do. A straightforward idea is that always go to the
next room that one haven’t searched. And for rooms without
treasure, you can leave a marker to indicate that it’s already
searched.

Remark

This is the idea of depth-first search.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The algorithm

Algorithm 3 Depth-first Search

function Depth-First Search(G)
Input: a graph G with n vertices
Output: labels l(v) of distinct integers in {1, 2, . . . , n} on a subset of
vertices v of G.

v ← is an arbitrary vertex; l(v)← 1; L← {2, . . . , n}; k ← 1
while there is an unlabeled vertex do

if ∃w ∈ V such that l(w) is undefined and {w, v} is an edge
then

l(w)← smallest element in L
L← L− {l(w)}; k ← l(w); pred(w)← v
v ← w

else if k = 1 then
Return the labels l(v)

else
v ← pred(v); k ← l(v)

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Example

Example

We apply the depth-first
search to the right graph. We
begin with vertex F .
k v min(L)

1 F 2
Blue ver-

tices are labeled; red are
unlabeled.

A

B C

D E F (1) G

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Example

We found C,E,G, arbitrarily
take G and label it by 2.

k 2

v G

w ∈ {C,E,G}
min(L) 3

A

B C

D E F (1) G(2);F

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Example

We found C and label it by 2.
k 3

v C

w ∈ {C}
min(L) 4

A

B C(3);G

D E F (1) G(2);F

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Example

We found B and label it by 4.
k 4

v B

w ∈ {B}
min(L) 5

A

B(4);C C(3);G

D E F (1) G(2);F

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Example

We found A,D,E, arbitrarily
take A and label it by 5.

k 5

v A

w ∈ {A,D,E}
min(L) 6

A(5);B

B(4);C C(3);G

D E F (1) G(2);F

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Example

We found nothing, thus back-
track to the predecessor B of
current v = A.

k 4

v B

w N/A

min(L) 6

A(5);B

B(4);C C(3);G

D E F (1) G(2);F

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Example

We found D,E, arbitrarily
take D and label it by 6, the
minimal label in L.

k 6

v D

w ∈ {D,E}
min(L) 7

A(5);B

B(4);C C(3);G

D(6);B E F (1) G(2);F

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Example

We found E and label it by 7,
the minimal label in L.

k 7

v E

w ∈ {E}
min(L) N/A

A(5);B

B(4);C C(3);G

D(6);B E(7);D F (1) G(2);F

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Example

We keep backtrack until k =
1.
k v pred(v)

7 E D

6 D B

4 B C

3 C G

2 G F

1 F N/A

A(5);B

B(4);C C(3);G

D(6);B E(7);D F (1) G(2);F

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The purpose

Proposition

A vertex is labeled by the depth-first search algorithm if and only if
there is a path from v to it.

Corollary

All vertices are labeled if and only if the graph is connected.

Remark

The depth-first search algorithm is used to check whether a graph
is connected or not.

Remark

The edges covered by the algorithms forms a spanning tree of the
connected component with v.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The purpose

Proposition

A vertex is labeled by the depth-first search algorithm if and only if
there is a path from v to it.

Corollary

All vertices are labeled if and only if the graph is connected.

Remark

The depth-first search algorithm is used to check whether a graph
is connected or not.

Remark

The edges covered by the algorithms forms a spanning tree of the
connected component with v.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The purpose

Proposition

A vertex is labeled by the depth-first search algorithm if and only if
there is a path from v to it.

Corollary

All vertices are labeled if and only if the graph is connected.

Remark

The depth-first search algorithm is used to check whether a graph
is connected or not.

Remark

The edges covered by the algorithms forms a spanning tree of the
connected component with v.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

The purpose

Proposition

A vertex is labeled by the depth-first search algorithm if and only if
there is a path from v to it.

Corollary

All vertices are labeled if and only if the graph is connected.

Remark

The depth-first search algorithm is used to check whether a graph
is connected or not.

Remark

The edges covered by the algorithms forms a spanning tree of the
connected component with v.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Complexity

Remark

Thinking of edges, one can check that the complexity of the
depth-first search algorithm is O(n2) where n is the number of
vertices.

Proof.

For an arbitrary edge, suppose its endpoints have labels a < b.
Then a was assigned first, and b was assigned later. The edge is
considered twice - first, when k = a and one found the unlabeled
neighbor and labeled it by b; second, when k = b and all neighbor
are already labeled, then back track to the predecessor with label
a. So the number of operations is up to 2|E| ≤ 2

(
n
2

)
= O(n2).

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Complexity

Remark

Thinking of edges, one can check that the complexity of the
depth-first search algorithm is O(n2) where n is the number of
vertices.

Proof.

For an arbitrary edge, suppose its endpoints have labels a < b.
Then a was assigned first, and b was assigned later. The edge is
considered twice - first, when k = a and one found the unlabeled
neighbor and labeled it by b; second, when k = b and all neighbor
are already labeled, then back track to the predecessor with label
a. So the number of operations is up to 2|E| ≤ 2

(
n
2

)
= O(n2).

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

Minimal Spanning Tree Algorithms
Depth-First Search

Homework Assignment #13 - today

Section 12.3 Exercise 1(c),
2(d), 4(a).
Section 12.5 Exercise 1(c)(d),
4.

Bo Lin
Math 2603 - Lecture 23 Section 12.3 & 12.5 Minimal Spanning Trees & Depth-First Search

	Minimal Spanning Tree Algorithms
	Depth-First Search

