Math 2603 - Lecture 26 Section 14.1 & 14.2 The Max Flow-Min Cut Theorem

Bo Lin

November 26th, 2019

Flows and cuts

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Motivation

In reality, we have various networks for transportation. For example:

- Gas & Gasoline;
- Trains & Flights;
- Electricity;
- Telephone calls.

Motivation

In reality, we have various networks for transportation. For example:

- Gas & Gasoline;
- Trains & Flights;
- Electricity;
- Telephone calls.

Remark

There are two notable features of these networks: many edges are directed, and each edge has a **capacity**. This means that we can regard them as directed weighted graphs.

Directed graphs

Definition

A digraph is a pair $(\mathcal{V}, \mathcal{E})$ of sets, where \mathcal{V} is nonempty and each element of \mathcal{E} is an ordered pair of distinct elements of \mathcal{V} . The elements of \mathcal{V} are still called vertices, while the elements of \mathcal{E} are called arcs.

Directed graphs

Definition

A digraph is a pair $(\mathcal{V}, \mathcal{E})$ of sets, where \mathcal{V} is nonempty and each element of \mathcal{E} is an ordered pair of distinct elements of \mathcal{V} . The elements of \mathcal{V} are still called vertices, while the elements of \mathcal{E} are called arcs.

Remark

In other words, a digraph is a graph where each edge is assigned a direction, usually labeled by an arrow.

Directed network

Definition

A **directed network** is a directed graph with an integer weight attached to each arc.

≣ । ह

Directed network

Definition

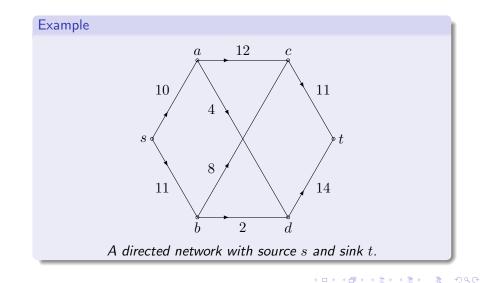
A **directed network** is a directed graph with an integer weight attached to each arc.

Remark

Sometimes it is also useful to allow non-integer weights, but in this lecture we only consider integer weights.

Flows and cuts The Max Flow-Min Cut Theorem

Example of directed network



Flows

Definition

Given a directed network with vertex set V, the capacity of arc uv denoted c_{uv} , and given two distinguished vertices s and t, called the **source** and **sink**, respectively, an (s,t)-flow is a set \mathcal{F} of numbers $\{f_{uv}\}$ satisfying

$$0 \le f_{uv} \le c_{uv} \text{ for all } (u,v) \in \mathcal{E};$$

(conservation of flow)
$$\sum_{v \in \mathcal{V}} f_{uv} = \sum_{v \in \mathcal{V}} f_{vu}$$
 for all $u \in \mathcal{V} - \{s, t\}$.

Flows

Definition

Given a directed network with vertex set V, the capacity of arc uv denoted c_{uv} , and given two distinguished vertices s and t, called the **source** and **sink**, respectively, an (s,t)-flow is a set \mathcal{F} of numbers $\{f_{uv}\}$ satisfying

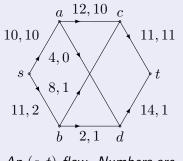
$$0 \leq f_{uv} \leq c_{uv} \text{ for all } (u,v) \in \mathcal{E};$$

(conservation of flow)
$$\sum_{v \in \mathcal{V}} f_{uv} = \sum_{v \in \mathcal{V}} f_{vu}$$
 for all $u \in \mathcal{V} - \{s, t\}$.

Remark

The conservation of flow means that at any other vertex than s, t of the network, the influx and efflux are equal.

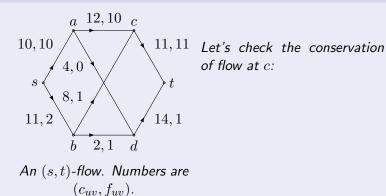
Example



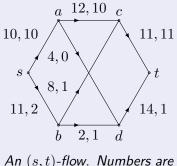
An (s,t)-flow. Numbers are $(c_{uv}, f_{uv}).$

э

Example



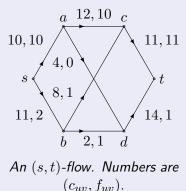
Example



Let's check the conservation of flow at c: influx: $f_{ac}+f_{bc} = 10+1 = 11$; efflux: $f_{ct} = 11$.

An (s,t)-flow. Numbers are $(c_{uv}, f_{uv}).$

Example



Let's check the conservation of flow at c: influx: $f_{ac}+f_{bc} = 10+1 = 11$; efflux: $f_{ct} = 11$. The efflux at s:

$$f_{sa} + f_{sb} = 10 + 2 = 12.$$

Efflux at source equals to influx at sink

Proposition Let *s* be the source and *t* be the sink of a flow $\mathcal{F} = \{f_{uv}\}$, then $\sum_{v \in \mathcal{V}} f_{sv} - \sum_{v \in \mathcal{V}} f_{vs} = \sum_{v \in \mathcal{V}} f_{vt} - \sum_{v \in \mathcal{V}} f_{tv}.$

- 4 戸 ト - ヨ ト - 4

Efflux at source equals to influx at sink

Proposition

Let s be the source and t be the sink of a flow $\mathcal{F} = \{f_{uv}\}$, then

$$\sum_{v \in \mathcal{V}} f_{sv} - \sum_{v \in \mathcal{V}} f_{vs} = \sum_{v \in \mathcal{V}} f_{vt} - \sum_{v \in \mathcal{V}} f_{tv}.$$

Proof.

Note that

$$\sum_{u,v\in\mathcal{V}}f_{uv}=\sum_{u,v\in\mathcal{V}}f_{vu}.$$

Then it follows from the conservation of flow properties.

Value of flow

Remark

The number 12 in the previous example seems important. We have a name for it.

≣ । ह

Value of flow

Remark

The number 12 in the previous example seems important. We have a name for it.

Definition

The value of a flow $\mathcal{F} = \{f_{uv}\}$ in a directed network with source s, sink t and vertex set \mathcal{V} is the integer

$$val(\mathcal{F}) = \sum_{v \in \mathcal{V}} f_{sv} - \sum_{v \in \mathcal{V}} f_{vs}.$$

Equivalently,

$$val(\mathcal{F}) = \sum_{v \in \mathcal{V}} f_{vt} - \sum_{v \in \mathcal{V}} f_{tv}.$$

Cuts

Remark

Usually we want to maximize the value of a flow. But apparently it is bounded by the capacity of the arcs.

Cuts

Remark

Usually we want to maximize the value of a flow. But apparently it is bounded by the capacity of the arcs. In addition there is another bound.

Cuts

Remark

Usually we want to maximize the value of a flow. But apparently it is bounded by the capacity of the arcs. In addition there is another bound.

Definition

Let \mathcal{V} be the vertex set of a directed network with source s and sink t. An (s,t)-cut is a partition $\{\mathcal{S},\mathcal{T}\}$ of \mathcal{V} such that $s \in \mathcal{S}$ and $t \in \mathcal{T}$. The capacity of an (s,t)-cut $\{\mathcal{S},\mathcal{T}\}$ is the sum of the capacities of all arcs from \mathcal{S} to \mathcal{T} , denoted $cap(\mathcal{S},\mathcal{T})$:

$$cap(\mathcal{S},\mathcal{T}) = \sum_{u \in \mathcal{S}, v \in \mathcal{T}} c_{uv}.$$

An inequality

Remark

Intuitively, the capacity of a (s,t)-cut implies the maximal possible amount of flow from S to T.

∋⊳

An inequality

Remark

Intuitively, the capacity of a (s,t)-cut implies the maximal possible amount of flow from S to T.

Theorem

In any directed network, the value of an (s,t)-flow never exceeds the capacity of any (s,t)-cut.

An inequality

Remark

Intuitively, the capacity of a (s,t)-cut implies the maximal possible amount of flow from S to T.

Theorem

In any directed network, the value of an $(s,t)\mbox{-flow}$ never exceeds the capacity of any $(s,t)\mbox{-cut}.$

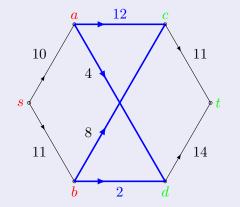
Sketch of proof.

$$val(\mathcal{F}) = \sum_{u \in \mathcal{S}, v \in \mathcal{T}} (f_{uv} - f_{vu}).$$

.⊒ →

The former terms are at most c_{uv} , the latter terms are at least 0.

Example of a cut



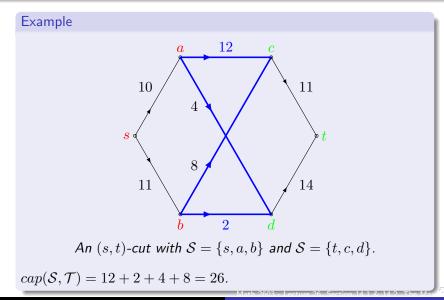
An (s,t)-cut with $S = \{s, a, b\}$ and $S = \{t, c, d\}$.

Math 2603

Lecture 26 Section 14.1

200

Example of a cut



The Max Flow-Min Cut Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Max Flow-Min Cut Theorem

Remark

Now we know that the capacity of any cut is an upper bound of a flow. So the value is at most the minimal capacity of all (s,t)-cuts.

The Max Flow-Min Cut Theorem

Remark

Now we know that the capacity of any cut is an upper bound of a flow. So the value is at most the minimal capacity of all (s,t)-cuts. But is it always attainable?

The Max Flow-Min Cut Theorem

Remark

Now we know that the capacity of any cut is an upper bound of a flow. So the value is at most the minimal capacity of all (s,t)-cuts. But is it always attainable?

Fortunately, the answer is yes!

Theorem (Max flow-Min cut)

In a directed network, the maximal value of an (s,t)-flow equals the minimum capacity of all (s,t)-cuts.

Improving flows via chains

Remark

Now the task is, given a flow whose value is less than the min-cut, how to obtain another flow with higher value?

Improving flows via chains

Remark

Now the task is, given a flow whose value is less than the min-cut, how to obtain another flow with higher value?

Remark

We can simply increase the flow via some arcs. Since it is a flow, those arcs must be linked from s to t. Regardless of the directions of arcs, we would call a trail by the term **chain**.

Improving flows via chains

Remark

Now the task is, given a flow whose value is less than the min-cut, how to obtain another flow with higher value?

Remark

We can simply increase the flow via some arcs. Since it is a flow, those arcs must be linked from s to t. Regardless of the directions of arcs, we would call a trail by the term **chain**.

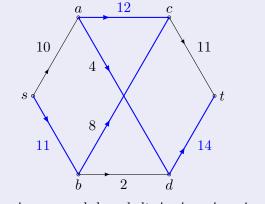
Definition

In a chain, if an arc has the same direction as the chain, it is a **forward arc**; otherwise it is a **backward arc**.

Example: a chain

Example

sbcadt is a chain from s to t.



Forward arcs are sb, bc, ad, dt; backward arc is ac.

200

Flow-augmenting chains

Remark

We only focus on the chains that are helpful to the improvement of flows.

Flow-augmenting chains

Remark

We only focus on the chains that are helpful to the improvement of flows.

Definition

A chain is flow-augmenting if $f_{uv} < c_{uv}$ for all forward arcs uv and $f_{uv} > 0$ for all backward arcs uv.

Flow-augmenting chains

Remark

We only focus on the chains that are helpful to the improvement of flows.

Definition

A chain is flow-augmenting if $f_{uv} < c_{uv}$ for all forward arcs uv and $f_{uv} > 0$ for all backward arcs uv.

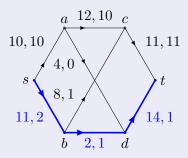
Remark

We want more flow in the direction of the chain. So for forward arcs we want higher f_{uv} , while for backward arcs we want to reduce the value of f_{uv} .

Flows and cuts The Max Flow-Min Cut Theorem

Example: improvement via a flow-augmenting chain

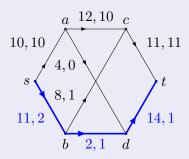
Example



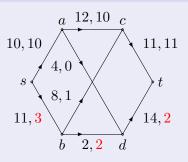
An (s, t)-flow with value 12. sbdt is a flow augmenting chain with maximal amount of improvement $\min(11-2, 2-1, 14-1) = 1.$ Flows and cuts The Max Flow-Min Cut Theorem

Example: improvement via a flow-augmenting chain

Example



An (s, t)-flow with value 12. sbdt is a flow augmenting chain with maximal amount of improvement $\min(11-2, 2-1, 14-1) = 1.$



The max adjustment is the minimum of all $c_{uv} - f_{uv}$ for forward arcs uv and f_{uv} for all backward arcs uv. We adjust 1 along the chain and get a flow of value 13.

Proof of the Theorem.

If a flow-augmenting chain exists, then the maximal value is not attained yet. So for any maximal flow \mathcal{F} , no flow-augmenting chain exists.

Proof of the Theorem.

If a flow-augmenting chain exists, then the maximal value is not attained yet. So for any maximal flow \mathcal{F} , no flow-augmenting chain exists. Now let \mathcal{S} be the set of vertices that there is a flow-augmenting chain from s to it. And let \mathcal{T} be the complement of \mathcal{S} .

Proof of the Theorem.

If a flow-augmenting chain exists, then the maximal value is not attained yet. So for any maximal flow \mathcal{F} , no flow-augmenting chain exists. Now let \mathcal{S} be the set of vertices that there is a flow-augmenting chain from s to it. And let \mathcal{T} be the complement of \mathcal{S} . Note that $s \in \mathcal{S}$, and $t \notin \mathcal{S}$, so $\{\mathcal{S}, \mathcal{T}\}$ is an (s, t)-cut.

Proof of the Theorem.

If a flow-augmenting chain exists, then the maximal value is not attained yet. So for any maximal flow \mathcal{F} , no flow-augmenting chain exists. Now let \mathcal{S} be the set of vertices that there is a flow-augmenting chain from s to it. And let \mathcal{T} be the complement of \mathcal{S} . Note that $s \in \mathcal{S}$, and $t \notin \mathcal{S}$, so $\{\mathcal{S}, \mathcal{T}\}$ is an (s, t)-cut.For any $u \in \mathcal{S}$ and $v \in \mathcal{T}$. There is a flow-augment chain from s to u but no such chain from s to v. Then if there are arcs uv or vu, we must have

$$f_{uv} = c_{uv}, f_{vu} = 0.$$

Hence \mathcal{F} reaches the maximal capacity with respect to the cut $\{\mathcal{S}, \mathcal{T}\}$, and as a result $val(\mathcal{F}) = cap(\mathcal{S}, \mathcal{T})$.

The maximal flow of our example

Remark

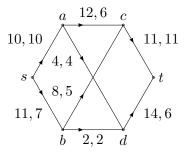
The min-cut is $\{s, a, b, c\}, \{t, d\}$ with capacity 4 + 2 + 11 = 17.

∃ >

The maximal flow of our example

Remark

The min-cut is $\{s, a, b, c\}, \{t, d\}$ with capacity 4 + 2 + 11 = 17.



A maximal (s, t)-flow. Numbers are (c_{uv}, f_{uv}) .

Thank you very much! Please do the CIOS in time.