## Math 2603 - Lecture 4 Section 2.3 & 2.4 Relations

Bo Lin

August 29th, 2019

Bo Lin Math 2603 - Lecture 4 Section 2.3 & 2.4 Relations

・ 同 ト ・ ヨ ト ・ ヨ ト

# **Cartesian Products**

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

### Cartesian products

#### Definition

Given elements a and b, the symbol (a, b) denotes the **ordered pair** consisting of a and b with the order that a is the first element of the pair and b is the second element. Two ordered pairs (a, b)and (c, d) are equal if and only if a = c and b = d.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

### Cartesian products

#### Definition

Given elements a and b, the symbol (a, b) denotes the **ordered pair** consisting of a and b with the order that a is the first element of the pair and b is the second element. Two ordered pairs (a, b)and (c, d) are equal if and only if a = c and b = d.

#### Definition

Given sets A and B, the Cartesian product of A and B, denoted  $A \times B$  and read A cross B, is the set of all ordered pairs (a, b), where a is in A and b is in B:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

・ 同 ト ・ ヨ ト ・ ヨ

### René Descartes

René Descartes (1596-1650) was a French philosopher, mathematician, and scientist. He made a lot of contributions to mathematics. For example, the **Cartesian coordinate system** is named after him.



• • = • • = •

### Example of a Cartesian product

#### Example

Let  $A = \{2, 4, 6\}$  and  $B = \{1, 3, 5\}$ . Denote their Cartesian product  $A \times B$  and find the number of elements in it.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

### Example of a Cartesian product

#### Example

Let  $A = \{2, 4, 6\}$  and  $B = \{1, 3, 5\}$ . Denote their Cartesian product  $A \times B$  and find the number of elements in it.

#### Solution

$$A \times B = \{(2,1), (2,3), (2,5), (4,1), (4,3), (4,5), (6,1), (6,3), (6,5)\}$$

So there are  $3 \cdot 3 = 9$  elements in their Cartesian product.

- 4 同 ト 4 ヨ ト 4 ヨ ト

### Cartesian products of multiple sets

#### Definition

For  $n \geq 2$  sets  $A_1, A_2, \ldots, A_n$ , their Cartesian product is

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i \text{ for } 1 \le i \le n\}.$$

< 回 > < 回 > < 回 >

# **Binary relations**

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

### Relations

#### Definition

Let A and B be sets. A binary relation  $\mathcal{R}$  from A to B is a subset of  $A \times B$ . A binary relation on A is a subset of  $A \times A$ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

### Relations

#### Definition

Let A and B be sets. A binary relation  $\mathcal{R}$  from A to B is a subset of  $A \times B$ . A binary relation on A is a subset of  $A \times A$ .

#### Remark

Suppose  $\mathcal{R}$  is a relation from A to B, and the pair (a,b) is in  $\mathcal{R}$ , we write  $(a,b) \in \mathcal{R}$ , while other people prefer to write  $a\mathcal{R}b$ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

### Example of relations

#### Example

For sets A and B, the empty set and the Cartesian product  $A \times B$  are both relations from A to B.

### Example of relations

#### Example

For sets A and B, the empty set and the Cartesian product  $A \times B$  are both relations from A to B.

#### Example

If A is the set of GT students registered in Fall 2019 and B be the set of GT courses in Fall 2019. Then

 $\{(a,b) \in A \times B \mid a \text{ is enrolled in } b\}$ 

is a relation from A to B.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

### Properties of relations on A

When we study the properties of a set A, we may need to consider relations on it. In particular, we consider the following properties:

- reflexivity;
- symmetry;
- antisymmetry;
- transitivity.

### **Reflexive relations**

#### Definition

#### The relation $\mathcal{R}$ on A is reflexive, if for all $x \in A$ , $(x, x) \in \mathcal{R}$ .

Bo Lin Math 2603 - Lecture 4 Section 2.3 & 2.4 Relations

伺 ト イヨト イヨト

э

### Symmetric relations

#### Definition

The relation  $\mathcal{R}$  on A is symmetric, if for all  $x, y \in A$ ,  $(x, y) \in \mathcal{R}$  implies  $(y, x) \in \mathcal{R}$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

э

### Symmetric relations

#### Definition

The relation  $\mathcal{R}$  on A is symmetric, if for all  $x, y \in A$ ,  $(x, y) \in \mathcal{R}$  implies  $(y, x) \in \mathcal{R}$ .

#### Example

Is the empty relation on a set A symmetric?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

### Symmetric relations

#### Definition

The relation  $\mathcal{R}$  on A is symmetric, if for all  $x, y \in A$ ,  $(x, y) \in \mathcal{R}$  implies  $(y, x) \in \mathcal{R}$ .

#### Example

Is the empty relation on a set A symmetric?

#### Solution

Yes. Because the implications are all true.

・ 同 ト ・ ヨ ト ・ ヨ

### Antisymmetric relations

#### Definition

The relation  $\mathcal{R}$  on A is antisymmetric, if for all  $x, y \in A$ ,  $(x, y) \in \mathcal{R}$  and  $(y, x) \in \mathcal{R}$  implies x = y.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

### Antisymmetric relations

#### Definition

The relation  $\mathcal{R}$  on A is antisymmetric, if for all  $x, y \in A$ ,  $(x, y) \in \mathcal{R}$  and  $(y, x) \in \mathcal{R}$  implies x = y.

#### Example

The relation  $\{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$  is antisymmetric, as  $x \leq y$  and  $y \leq x$  would imply x = y.

・ 同 ト ・ ヨ ト ・ ヨ ト

### Transitive relations

#### Definition

The relation  $\mathcal{R}$  on A is transitive, if for all  $x, y, z \in A$ ,  $(x, y) \in \mathcal{R}$ and  $(y, z) \in \mathcal{R}$  implies  $(x, z) \in \mathcal{R}$ .

伺 ト イヨト イヨト

э

Exercise: the properties are independent of each other

#### Example

Find a relation  $\mathcal{R}$  on  $\mathbb{N}$  that is reflexive and symmetric, but not transitive.

∃ → ∢

### Exercise: the properties are independent of each other

#### Example

Find a relation  $\mathcal{R}$  on  $\mathbb{N}$  that is reflexive and symmetric, but not transitive.

#### Solution

We let  $\mathcal{R}$  be a relation on  $\mathbb{N}$  such that for all  $x, y \in \mathbb{N}$ ,  $(x, y) \in \mathcal{R} \Leftrightarrow |x - y| \leq 1$ . This R is reflexive because for any  $x \in \mathbb{N}$ ,  $|x - x| = 0 \leq 1$  and if  $|x - y| \leq 1$ , then  $|y - x| \leq 1$ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

### Exercise: the properties are independent of each other

#### Example

Find a relation  $\mathcal{R}$  on  $\mathbb{N}$  that is reflexive and symmetric, but not transitive.

#### Solution

We let  $\mathcal{R}$  be a relation on  $\mathbb{N}$  such that for all  $x, y \in \mathbb{N}$ ,  $(x,y) \in \mathcal{R} \Leftrightarrow |x-y| \leq 1$ . This R is reflexive because for any  $x \in \mathbb{N}$ ,  $|x-x| = 0 \leq 1$  and if  $|x-y| \leq 1$ , then  $|y-x| \leq 1$ . However we have  $(1,2) \in \mathcal{R}$ ,  $(2,3) \in \mathcal{R}$ , but  $(1,3) \notin \mathcal{R}$ . So  $\mathcal{R}$  is not transitive.

・ 同 ト ・ ヨ ト ・ ヨ ト

### Exercise: examples of relations

#### Example

Consider the following relations  $\mathcal{R}$  defined on  $\mathbb{N}$ , are they reflexive, symmetric and transitive?

- If and only if  $\frac{y}{x} \in \mathbb{N}$ ,  $(x, y) \in \mathcal{R}$  if and only if  $\frac{y}{x} \in \mathbb{N}$ .
- If  $x, y \in \mathbb{N}$ ,  $(x, y) \in \mathcal{R}$  if and only if x < y.
- If  $x, y \in \mathbb{N}$ ,  $(x, y) \in \mathcal{R}$  if and only if x + y is even.

**F 4 3 F 4** 

# Exercise: examples of relations

#### Solution

| ŀ | Relation | Reflexive | Symmetric           | Transitive |
|---|----------|-----------|---------------------|------------|
|   | (a)      | Yes       | No $(x = 1, y = 2)$ | Yes        |
|   |          |           |                     |            |
|   |          |           |                     |            |

. . . . . . .

# Exercise: examples of relations

#### Solution

| Relation | Reflexive  | Symmetric                  | Transitive |
|----------|------------|----------------------------|------------|
| (a)      | Yes        | <i>No</i> $(x = 1, y = 2)$ | Yes        |
| (b)      | No $(x=1)$ | <i>No</i> $(x = 1, y = 2)$ | Yes        |
|          |            |                            |            |

# Exercise: examples of relations

#### Solution

| Relation | Reflexive           | Symmetric                  | Transitive |
|----------|---------------------|----------------------------|------------|
| (a)      | Yes                 | <i>No</i> $(x = 1, y = 2)$ | Yes        |
| (b)      | <i>No</i> $(x = 1)$ | <i>No</i> $(x = 1, y = 2)$ | Yes        |
| (c)      | Yes                 | Yes                        | Yes        |

Bo Lin Math 2603 - Lecture 4 Section 2.3 & 2.4 Relations

. . . . . . .

# Equivalence relations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

### Definition

#### Definition

Let  $\mathcal{R}$  be a relation on a set A.  $\mathcal{R}$  is called an **equivalence** relation if it is reflexive, symmetric, and transitive.

伺 ト イヨト イヨト

### Definition

#### Definition

Let  $\mathcal{R}$  be a relation on a set A.  $\mathcal{R}$  is called an **equivalence** relation if it is reflexive, symmetric, and transitive.

#### Remark

For equivalence relation  $\mathcal{R}$  and  $(a,b) \in \mathcal{R}$ , we usually write  $a \sim b$ .

• • = • • = •

### Examples of equivalence relations

• On any set of numbers, "being equal" is always an equivalence relation.

伺 ト イ ヨ ト イ ヨ

### Examples of equivalence relations

- On any set of numbers, "being equal" is always an equivalence relation.
- Fix  $n \in \mathbb{N}$ . On any subset of  $\mathbb{Z}$ , the relation containing all (x, y) when  $n \mid (x y)$  is an equivalence relation.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

### Examples of equivalence relations

- On any set of numbers, "being equal" is always an equivalence relation.
- Fix  $n \in \mathbb{N}$ . On any subset of  $\mathbb{Z}$ , the relation containing all (x, y) when  $n \mid (x y)$  is an equivalence relation.
- On any set of sets, "having the same number of elements (cardinality)" is an equivalence relation.

・ 同 ト ・ ヨ ト ・ ヨ ト

### Equivalence classes

#### Definition

Suppose A is a set and  $\mathcal{R}$  is an equivalence relation on A. For each element  $a \in A$ , the **equivalence class** of a, denoted  $\overline{a}$  and called the class of a for short, is the set of all elements  $x \in A$  such that  $(x, a) \in \mathcal{R}$ . In symbols:

$$\overline{a} = \{ x \in A \mid (x, a) \in \mathcal{R} \}.$$

. . . . . .

### Equivalence classes

#### Definition

Suppose A is a set and  $\mathcal{R}$  is an equivalence relation on A. For each element  $a \in A$ , the **equivalence class** of a, denoted  $\overline{a}$  and called the class of a for short, is the set of all elements  $x \in A$  such that  $(x, a) \in \mathcal{R}$ . In symbols:

$$\overline{a} = \{ x \in A \mid (x, a) \in \mathcal{R} \}.$$

#### Definition

The set of equivalence class of A is called the **quotient set** of A mod  $\sim$  and denoted  $A/\sim$ .

▲ 同 ▶ ▲ 国 ▶ ▲ 国

### Equivalence classes form a partition

#### Proposition

Let  $\mathcal{R}$  be an equivalence relation on a set A, and  $\overline{a}, \overline{b}$  are two equivalence classes. Then, either  $\overline{a} = \overline{b}$  or  $\overline{a} \cap \overline{b} = \emptyset$ .

### Equivalence classes form a partition

#### Proposition

Let  $\mathcal{R}$  be an equivalence relation on a set A, and  $\overline{a}, \overline{b}$  are two equivalence classes. Then, either  $\overline{a} = \overline{b}$  or  $\overline{a} \cap \overline{b} = \emptyset$ .

#### Proof.

We prove by cases. If  $(a,b) \in \mathcal{R}$ , by symmetry,  $(b,a) \in \mathcal{R}$ . Then for any  $c \in \overline{a}$ , since  $(c,a) \in \mathcal{R}$  and  $\mathcal{R}$  is transitive, we have  $(c,b) \in \mathcal{R}$  and  $c \in \overline{b}$ ; similarly for  $c \in \overline{b}$ , since  $(c,b) \in \mathcal{R}$  and  $\mathcal{R}$  is transitive, we have  $(c,a) \in \mathcal{R}$  and  $c \in \overline{a}$ . So  $\overline{a} = \overline{b}$ .

イロト イヨト イヨト

### Equivalence classes form a partition

#### Proposition

Let  $\mathcal{R}$  be an equivalence relation on a set A, and  $\overline{a}, \overline{b}$  are two equivalence classes. Then, either  $\overline{a} = \overline{b}$  or  $\overline{a} \cap \overline{b} = \emptyset$ .

#### Proof.

We prove by cases.

If  $(a, b) \in \mathcal{R}$ , by symmetry,  $(b, a) \in \mathcal{R}$ . Then for any  $c \in \overline{a}$ , since  $(c, a) \in \mathcal{R}$  and  $\mathcal{R}$  is transitive, we have  $(c, b) \in \mathcal{R}$  and  $c \in \overline{b}$ ; similarly for  $c \in \overline{b}$ , since  $(c, b) \in \mathcal{R}$  and  $\mathcal{R}$  is transitive, we have  $(c, a) \in \mathcal{R}$  and  $c \in \overline{a}$ . So  $\overline{a} = \overline{b}$ . If  $(a, b) \notin \mathcal{R}$ . We claim that  $\overline{a} \cap \overline{b} = \emptyset$ . Suppose  $\exists c \in \overline{a} \cap \overline{b}$ , then  $(c, a), (c, b) \in \mathcal{R}$ . By symmetry of  $\mathcal{R}$ ,  $(a, c) \in \mathcal{R}$ . By transitivity,  $(a, b) \in \mathcal{R}$ , a contradiction!

< ロ > < 同 > < 回 > < 回 >

### Equivalence classes form a partition

#### Definition

A **partition** on a set A is a collection of disjoint nonempty subsets of A whose union is A.

### Equivalence classes form a partition

#### Definition

A partition on a set A is a collection of disjoint nonempty subsets of A whose union is A.

#### Theorem

The equivalence classes associated with an equivalence relation on A form a partition on A.

### Representatives of equivalence classes

#### Definition

Suppose  $\mathcal{R}$  is an equivalence relation on a set A and S is an equivalence class of  $\mathcal{R}$ . A **representative** of the class S is any element  $a \in A$  such that  $\overline{a} = S$ .

### Representatives of equivalence classes

#### Definition

Suppose  $\mathcal{R}$  is an equivalence relation on a set A and S is an equivalence class of  $\mathcal{R}$ . A **representative** of the class S is any element  $a \in A$  such that  $\overline{a} = S$ .

#### Remark

By the previous exercise, any element in the same equivalence class serves as its representative.

→ Ξ →

HW Assignment #2 - Section 2.3 & 2.4

Section 2.3 Exercise 3(b)(c), 5(b)(d), 7, 11(a)(b). Section 2.4 Exercise 4, 6, 12, 18(a)(e).

. . . . . .