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Arithmetic operations

We have been familiar with addition and multiplication among real
numbers. And they have a lot of good properties.

For integers a, b, c, we have

(commutativity) a+ b = b+ a; a ∗ b = b ∗ a.

(associativity) a+(b+ c) = (a+ b)+ c; a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(distributive law) a ∗ (b+ c) = a ∗ b+ a ∗ c.

(identities) a+ 0 = a; a ∗ 1 = a.

(additive inverse) a+ (−a) = 0.

(multiplicative inverse)a ∗
(
1
a

)
= 1 for all a 6= 0.

Remark

In fact, there are other arithmetic operations.
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Subtraction and division

Definition

For real numbers a, b, the subtraction is defined in terms of
addition that

a− b = a+ (−b).

Definition

For real numbers a, b with b 6= 0, the division is defined in term of
addition that

a/b = c,

where c is the unique real number such that c · b = a.

Today, we focus on the case when both a, b are integers. Note that
c may not be an integer. But if a, b ∈ Z, by definition c ∈ Q.
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Divisibility

Definition

If a and b are integers and b 6= 0 then a is divisible by b if and
only if a equals b times some integer. Instead of a is divisible by b,
we can also say that

a is a multiple of b;

b is a factor of a;

b is a divisor of a;

b divides a.

The notation b|a is read b divides a. Symbolically, if a and b are
integers and b 6= 0

b|a⇔ ∃k ∈ Z such that a = k · b.
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Examples: checking divisibility

Example

(a) Is 21 divisible by 3?

(b) Does 4 divide 22?

(c) Is 28 a multiple of −7?

Solution

(a) Since 21 = 3 · 7, yes.
(b) Since 22/4 = 5.5 /∈ Z, no.
(c) Since 28 = (−7) · (−4), yes.
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The Well-ordering Principle

Axiom (The Well-ordering Principle)

Let S be a nonempty set of integers all of which are greater than
some fixed integer C. Then S has a least element. In particular,
any nonempty subset of N has a least element.

Remark

This principle is equivalent to the principle of mathematical
induction. In other words, either one could imply the other.
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What happens when b - a

Suppose a, b are integers such that b - a, can we still do a/b?

Example

Suppose 3 students are devouring a large pizza together. There are
8 slices in total. How could they share the pizza as equal as
possible without dividing each slice?

Remark

First, each student would get 2 slices. There are still 8− 3 · 2 = 2
slices remaining. Since 2 < 3, they cannot further divide them.

Remark

This is exactly how division between integers works.
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Quotient-remainder Theorem

Theorem (Quotient-remainder Theorem)

Given any integer a and integer b > 0, there exists a unique pair of
integers q and r such that

a = qb+ r

and 0 ≤ r < b.

Definition

The unique q above is called the quotient of the division and the
unique r above is called the remainder of the division.
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Proof of Quotient-remainder Theorem

Proof.

Consider the set

S = {kb | k ∈ Z, kb > a}.

Since b > 0, when k is big enough, kb would be greater than a, so
S is nonempty. By definition, all elements in S are greater than a.
By the The Well-ordering Principle, S has a least element, say
(q + 1)b, where q ∈ Z. Then (q + 1)b > a. Now we look at qb.
Since qb < (q + 1)b, qb /∈ S. While q ∈ Z, so the only violation is
that qb ≤ a. Hence

qb ≤ a < (q + 1)b.

Finally we let r = a− qb. Then 0 ≤ r < (q + 1)b− qb = b.
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Division algorithm

Corollary

For any integer a and integer b > 0, the quotient of a/b is q =
⌊
a
b

⌋
and r = a− qb.

Remark

In practice, it is essential to find the consecutive integers that a
b is

between them.

Bo Lin Math 2603 - Lecture 7 Section 4.1 to 4.3 Division and prime numbers



Division and divisibility
Euclidean algorithm

Division algorithm

Corollary

For any integer a and integer b > 0, the quotient of a/b is q =
⌊
a
b

⌋
and r = a− qb.

Remark

In practice, it is essential to find the consecutive integers that a
b is

between them.

Bo Lin Math 2603 - Lecture 7 Section 4.1 to 4.3 Division and prime numbers



Division and divisibility
Euclidean algorithm

A more general version

Theorem (Quotient-remainder Theorem)

Given any integer a and integer b 6= 0, there exists a unique pair of
integers q and r such that

a = qb+ r

and 0 ≤ r < |b|.

Corollary

For any integer a and integer b < 0, the quotient of a/b is q =
⌈
a
b

⌉
and r = a− qb.
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Example: find the quotients and remainders

Example

Find the quotients and remainders for the following pairs of n and
d:

(a) n = 20 and d = 7;

(b) n = −8 and d = 3;

Solution

(a) 20 = 7 · 2 + 6 and 0 ≤ 6 < 7, so q = 2 and r = 6.
(b) −8 = 3 · (−3) + 1 and 0 ≤ 1 < 3, so q = −3 and r = 1.

Bo Lin Math 2603 - Lecture 7 Section 4.1 to 4.3 Division and prime numbers



Division and divisibility
Euclidean algorithm

Example: find the quotients and remainders

Example

Find the quotients and remainders for the following pairs of n and
d:

(a) n = 20 and d = 7;

(b) n = −8 and d = 3;

Solution

(a) 20 = 7 · 2 + 6 and 0 ≤ 6 < 7, so q = 2 and r = 6.

(b) −8 = 3 · (−3) + 1 and 0 ≤ 1 < 3, so q = −3 and r = 1.

Bo Lin Math 2603 - Lecture 7 Section 4.1 to 4.3 Division and prime numbers



Division and divisibility
Euclidean algorithm

Example: find the quotients and remainders

Example

Find the quotients and remainders for the following pairs of n and
d:

(a) n = 20 and d = 7;

(b) n = −8 and d = 3;

Solution

(a) 20 = 7 · 2 + 6 and 0 ≤ 6 < 7, so q = 2 and r = 6.
(b) −8 = 3 · (−3) + 1 and 0 ≤ 1 < 3, so q = −3 and r = 1.

Bo Lin Math 2603 - Lecture 7 Section 4.1 to 4.3 Division and prime numbers



Division and divisibility
Euclidean algorithm

Integers in other bases

When we write integers, we are using the decimal representation,
which is base 10. For example,

123 = 100 + 20 + 3 = 1 · 102 + 2 · 101 + 3 · 100.

In fact, for any integer b > 1, we can write integers in base b.

Definition

Let b > 1 be a fixed integer. For integer N ≥ 0, base b
representation of N is the unique expression

(an−1an−2 · · · a0)b,

where integers 0 ≤ ai < b and
N = an−1b

n−1 + an−2b
n−2 + · · ·+ a1b+ a0.
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Conversion to base b

Proposition

Let N, b ∈ N with b > 1. Suppose the quotient and remainder of a
divided by b are q and r. If q = (an−1an−2 · · · a1)b, then
N = (an−1an−2 · · · a1r)b.

Remark

In order to convert N to base b, we keep dividing by b. In each
round of division, the remainder becomes the next rightmost digit,
and we divide b from quotient next, until the quotient becomes
zero.
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Example: convert to hexadecimal representation

Remark

”Base 16” is called hexadecimal representation. The digits 10
through 15 are denoted by the uppercase letters A through F .

Example

Convert (2159)10 to hexadecimal representation.

Solution

2159 divided by 16, we get 2159 = 134 · 16 + 15.
134 divided by 16, we get 134 = 8 · 16 + 6.
8 divided by 16, we get 8 = 0 · 16 + 8. So

(2159)10 = (86F )16.
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Prime numbers

Definition

For p ∈ N, p is called a prime number if p > 1 and p has no
positive divisors other than 1 and p. For q > 1, if q is not prime,
then q is called a composite number.

Remark

Warning! 1 is neither prime nor composite.

Example

The smallest prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, · · ·
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Existence of prime divisor

Proposition

For every integer n > 1, there exists a prime number p with p | n.

Proof.

Consider the set {n ∈ N | n > 1, n has no prime divisor}.

If it is
nonempty, by well-ordering principle it has a least element m.
Since m | m, m itself is not prime. So there exists 1 < a < m such
that a | m. Then a is not in the set and a has a prime divisor p.
Finally p | a, a | m implies p | m, a contradiction.
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There are infinitely many prime numbers

Theorem

There are infinitely many prime numbers.

Proof.

We prove by contradiction. Suppose there are finitely many prime
numbers p1, p2, · · · , pn. Let N be their product plus 1. Then none
of them can be a divisor of N , so N has no prime divisor, a
contradiction!

Remark

There are numerous proofs of this fact. This elegant short proof is
by Ancient Greek mathematician Euclid.
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Greatest Common Divisor

Definition

For a, b ∈ Z not both zero, the greatest common divisor of a, b,
denoted gcd(a, b), is the large common divisor g of a and b.

Remark

Since 1 divides every integer, a and b always have at least one
common divisor. And each common divisor is at most
max(|a|, |b|), so gcd(a, b) is well-defined.
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Least Common Multiple

Definition

For nonzero a, b ∈ Z, the least common multiple of a, b, denoted
lcm(a, b), is the smallest positive common multiple l of a and b.

Remark

Since |ab| is always one common multiple, lcm(a, b) is well-defined
by the well-ordering principle.
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Relatively prime

Definition

Integers a and b are called relatively prime (or coprime) if
gcd(a, b) = 1. In other words, a and b don’t have any common
divisor greater than 1 and they don’t have a common prime divisor.

Example

1 and any integer are relatively prime. n and n+ 1 are always
relatively prime.
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Examples: find gcd and lcm

Example

Find

(a) gcd(15, 6);

(b) lcm(4, 14).

Solution

(a) 15 = 5 · 3, 6 = 2 · 3, and they don’t have a bigger common
divisor. So gcd(15, 6) = 3.
(b) 14 itself is not a multiple of 4. The next multiple of 14 is
2 · 14 = 28 = 7 · 4, which is a multiple of 4. So lcm(4, 14) = 28.

Remark

We need a systematic method to compute gcd and lcm.
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Euclidean algorithm

Proposition

For integers a, b, q, r, if a = qb+ r, then gcd(a, b) = gcd(b, r).

Remark

Note that r < b, so we reduce the pair of integers in each division.
Eventually we will end up with a remainder r = 0, and then
gcd(b, r) = b. This method is called the Euclidean Algorithm.
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Example: apply Euclidean algorithm

Example

Find gcd(630, 196).

Solution

First, 630 = 3 · 196 + 42. It suffices to find gcd(196, 42).
Second, 196 = 4 · 42 + 28. It suffices to find gcd(42, 28).
Third, 42 = 1 · 28 + 14. It suffices to find gcd(28, 14).
Finally, 28 = 2 · 14 + 0. Hence gcd(630, 196) = 14.
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Bezout’s Theorem

Theorem (Bezout’s Theorem)

Let a, b ∈ Z and g = gcd(a, b). Then there exist integers m,n
such that g = ma+ nb.

Remark

Euclidean Algorithm can explicitly find m and n.

Example (Example revisited)

630 = 3 · 196 + 42 implies 42 = 1 · 630 + (−3) · 196.
196 = 4 · 42 + 28 implies
28 = 1 · 196− 4 · (1 · 630 + (−3) · 196) = (−4) · 630 + 13 · 196.
42 = 1 · 28 + 14 implies
14 = (1 · 630 + (−3) · 196)− 1 · ((−4) · 630 + 13 · 196) =
5 · 630 + (−16) · 196. So m = 5, n = −16.

Bo Lin Math 2603 - Lecture 7 Section 4.1 to 4.3 Division and prime numbers



Division and divisibility
Euclidean algorithm

Bezout’s Theorem

Theorem (Bezout’s Theorem)

Let a, b ∈ Z and g = gcd(a, b). Then there exist integers m,n
such that g = ma+ nb.

Remark

Euclidean Algorithm can explicitly find m and n.

Example (Example revisited)

630 = 3 · 196 + 42 implies 42 = 1 · 630 + (−3) · 196.
196 = 4 · 42 + 28 implies
28 = 1 · 196− 4 · (1 · 630 + (−3) · 196) = (−4) · 630 + 13 · 196.
42 = 1 · 28 + 14 implies
14 = (1 · 630 + (−3) · 196)− 1 · ((−4) · 630 + 13 · 196) =
5 · 630 + (−16) · 196. So m = 5, n = −16.

Bo Lin Math 2603 - Lecture 7 Section 4.1 to 4.3 Division and prime numbers



Division and divisibility
Euclidean algorithm

Bezout’s Theorem

Theorem (Bezout’s Theorem)

Let a, b ∈ Z and g = gcd(a, b). Then there exist integers m,n
such that g = ma+ nb.

Remark

Euclidean Algorithm can explicitly find m and n.

Example (Example revisited)

630 = 3 · 196 + 42 implies 42 = 1 · 630 + (−3) · 196.

196 = 4 · 42 + 28 implies
28 = 1 · 196− 4 · (1 · 630 + (−3) · 196) = (−4) · 630 + 13 · 196.
42 = 1 · 28 + 14 implies
14 = (1 · 630 + (−3) · 196)− 1 · ((−4) · 630 + 13 · 196) =
5 · 630 + (−16) · 196. So m = 5, n = −16.

Bo Lin Math 2603 - Lecture 7 Section 4.1 to 4.3 Division and prime numbers



Division and divisibility
Euclidean algorithm

Bezout’s Theorem

Theorem (Bezout’s Theorem)

Let a, b ∈ Z and g = gcd(a, b). Then there exist integers m,n
such that g = ma+ nb.

Remark

Euclidean Algorithm can explicitly find m and n.

Example (Example revisited)

630 = 3 · 196 + 42 implies 42 = 1 · 630 + (−3) · 196.
196 = 4 · 42 + 28 implies
28 = 1 · 196− 4 · (1 · 630 + (−3) · 196) = (−4) · 630 + 13 · 196.

42 = 1 · 28 + 14 implies
14 = (1 · 630 + (−3) · 196)− 1 · ((−4) · 630 + 13 · 196) =
5 · 630 + (−16) · 196. So m = 5, n = −16.

Bo Lin Math 2603 - Lecture 7 Section 4.1 to 4.3 Division and prime numbers



Division and divisibility
Euclidean algorithm

Bezout’s Theorem

Theorem (Bezout’s Theorem)

Let a, b ∈ Z and g = gcd(a, b). Then there exist integers m,n
such that g = ma+ nb.

Remark

Euclidean Algorithm can explicitly find m and n.

Example (Example revisited)

630 = 3 · 196 + 42 implies 42 = 1 · 630 + (−3) · 196.
196 = 4 · 42 + 28 implies
28 = 1 · 196− 4 · (1 · 630 + (−3) · 196) = (−4) · 630 + 13 · 196.
42 = 1 · 28 + 14 implies
14 = (1 · 630 + (−3) · 196)− 1 · ((−4) · 630 + 13 · 196) =
5 · 630 + (−16) · 196. So m = 5, n = −16.

Bo Lin Math 2603 - Lecture 7 Section 4.1 to 4.3 Division and prime numbers



Division and divisibility
Euclidean algorithm

Relation between gcd and lcm

Proposition

For nonzero a, b ∈ Z, we have gcd(a, b) lcm(a, b) = |ab|.

Remark

So in order to compute lcm(a, b), we can use Euclidean Algorithm
to compute gcd(a, b) first.
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HW Assignment #4 - today’s sections

Section 4.1 Exercise 4, 7, 8, 11(a).
Section 4.2 Exercise 7, 11, 12(a)(d),
27.
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