Math 2603 - Lecture 7 Section 4.1 to 4.3 Division and prime numbers

Bo Lin

September 10th, 2019

Bo Lin Math 2603 - Lecture 7 Section 4.1 to 4.3 Division and prime nu

→ < Ξ → <</p>

Division and divisibility

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Arithmetic operations

We have been familiar with addition and multiplication among real numbers. And they have a lot of good properties.

• • = • • = •

Arithmetic operations

We have been familiar with addition and multiplication among real numbers. And they have a lot of good properties.

For integers a, b, c, we have

- (commutativity) a + b = b + a; a * b = b * a.
- (associativity) a + (b + c) = (a + b) + c; a * (b * c) = (a * b) * c.
- (distributive law) a * (b + c) = a * b + a * c.
- (identities) a + 0 = a; a * 1 = a.
- (additive inverse) a + (-a) = 0.
- (multiplicative inverse) $a * \left(\frac{1}{a}\right) = 1$ for all $a \neq 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Arithmetic operations

We have been familiar with addition and multiplication among real numbers. And they have a lot of good properties.

For integers a, b, c, we have

- (commutativity) a + b = b + a; a * b = b * a.
- (associativity) a + (b + c) = (a + b) + c; a * (b * c) = (a * b) * c.
- (distributive law) a * (b + c) = a * b + a * c.
- (identities) a + 0 = a; a * 1 = a.
- (additive inverse) a + (-a) = 0.
- (multiplicative inverse) $a * \left(\frac{1}{a}\right) = 1$ for all $a \neq 0$.

Remark

In fact, there are other arithmetic operations.

< ロ > < 同 > < 三 > < 三 >

Subtraction and division

Definition

For real numbers a, b, the subtraction is defined in terms of addition that

$$a - b = a + (-b).$$

Subtraction and division

Definition

For real numbers a, b, the subtraction is defined in terms of addition that

$$a - b = a + (-b).$$

Definition

For real numbers a, b with $b \neq 0$, the **division** is defined in term of addition that

$$a/b = c,$$

where c is the unique real number such that $c \cdot b = a$.

Subtraction and division

Definition

For real numbers a, b, the subtraction is defined in terms of addition that

$$a - b = a + (-b).$$

Definition

For real numbers a, b with $b \neq 0$, the **division** is defined in term of addition that

$$a/b = c,$$

where c is the unique real number such that $c \cdot b = a$.

Today, we focus on the case when both a, b are integers. Note that c may not be an integer. But if $a, b \in \mathbb{Z}$, by definition $c \in \mathbb{Q}$.

Divisibility

Definition

If a and b are integers and $b \neq 0$ then a is **divisible** by b if and only if a equals b times some integer. Instead of a is divisible by b, we can also say that

- *a* is a multiple of *b*;
- b is a factor of a;
- b is a divisor of a;
- b divides a.

The notation b|a is read b divides a. Symbolically, if a and b are integers and $b\neq 0$

$$b|a \Leftrightarrow \exists k \in \mathbb{Z} \text{ such that } a = k \cdot b.$$

Examples: checking divisibility

Example

- (a) Is 21 divisible by 3?
- Does 4 divide 22?
- \bigcirc Is 28 a multiple of -7?

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Examples: checking divisibility

Example

- Is 21 divisible by 3?
- Does 4 divide 22?
- \bigcirc Is 28 a multiple of -7?

Solution

(a) Since $21 = 3 \cdot 7$, yes.

・ 同 ト ・ ヨ ト ・ ヨ ト

Examples: checking divisibility

Example

- Is 21 divisible by 3?
- Does 4 divide 22?
- \bigcirc Is 28 a multiple of -7?

Solution

(a) Since $21 = 3 \cdot 7$, yes. (b) Since $22/4 = 5.5 \notin \mathbb{Z}$, no.

Examples: checking divisibility

Example

- Is 21 divisible by 3?
- Does 4 divide 22?
- \bigcirc Is 28 a multiple of -7?

Solution

(a) Since
$$21 = 3 \cdot 7$$
, yes.
(b) Since $22/4 = 5.5 \notin \mathbb{Z}$, no.
(c) Since $28 = (-7) \cdot (-4)$, yes.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

The Well-ordering Principle

Axiom (The Well-ordering Principle)

Let S be a nonempty set of integers all of which are greater than some fixed integer C. Then S has a least element. In particular, any nonempty subset of \mathbb{N} has a least element.

.

The Well-ordering Principle

Axiom (The Well-ordering Principle)

Let S be a nonempty set of integers all of which are greater than some fixed integer C. Then S has a least element. In particular, any nonempty subset of \mathbb{N} has a least element.

Remark

This principle is equivalent to the principle of mathematical induction. In other words, either one could imply the other.

• • • • • • •

What happens when $b \nmid a$

Suppose a, b are integers such that $b \nmid a$, can we still do a/b?

• • • • • • •

What happens when $b \nmid a$

Suppose a, b are integers such that $b \nmid a$, can we still do a/b?

Example

Suppose 3 students are devouring a large pizza together. There are 8 slices in total. How could they share the pizza as equal as possible without dividing each slice?

★ ∃ → ★ ∃

What happens when $b \nmid a$

Suppose a, b are integers such that $b \nmid a$, can we still do a/b?

Example

Suppose 3 students are devouring a large pizza together. There are 8 slices in total. How could they share the pizza as equal as possible without dividing each slice?

Remark

First, each student would get 2 slices. There are still $8 - 3 \cdot 2 = 2$ slices remaining. Since 2 < 3, they cannot further divide them.

What happens when $b \nmid a$

Suppose a, b are integers such that $b \nmid a$, can we still do a/b?

Example

Suppose 3 students are devouring a large pizza together. There are 8 slices in total. How could they share the pizza as equal as possible without dividing each slice?

Remark

First, each student would get 2 slices. There are still $8 - 3 \cdot 2 = 2$ slices remaining. Since 2 < 3, they cannot further divide them.

Remark

This is exactly how division between integers works.

< ロ > < 同 > < 三 > < 三 >

Quotient-remainder Theorem

Theorem (Quotient-remainder Theorem)

Given any integer a and integer b > 0, there exists a unique pair of integers q and r such that

$$a = qb + r$$

and $0 \le r < b$.

A B F A B F

Quotient-remainder Theorem

Theorem (Quotient-remainder Theorem)

Given any integer a and integer b > 0, there exists a unique pair of integers q and r such that

$$a = qb + r$$

and $0 \le r < b$.

Definition

The unique q above is called the **quotient** of the division and the unique r above is called the **remainder** of the division.

伺 ト イヨト イヨト

Proof of Quotient-remainder Theorem

Proof.

Consider the set

$$S = \{kb \mid k \in \mathbb{Z}, kb > a\}.$$

Proof of Quotient-remainder Theorem

Proof.

Consider the set

$$S = \{kb \mid k \in \mathbb{Z}, kb > a\}.$$

Since b > 0, when k is big enough, kb would be greater than a, so S is nonempty.

Proof of Quotient-remainder Theorem

Proof.

Consider the set

$$S = \{kb \mid k \in \mathbb{Z}, kb > a\}.$$

Since b > 0, when k is big enough, kb would be greater than a, so S is nonempty. By definition, all elements in S are greater than a.

Proof of Quotient-remainder Theorem

Proof.

Consider the set

$$S = \{kb \mid k \in \mathbb{Z}, kb > a\}.$$

Since b > 0, when k is big enough, kb would be greater than a, so S is nonempty. By definition, all elements in S are greater than a. By the The Well-ordering Principle, S has a least element, say (q+1)b, where $q \in \mathbb{Z}$. Then (q+1)b > a.

Proof of Quotient-remainder Theorem

Proof.

Consider the set

$$S = \{kb \mid k \in \mathbb{Z}, kb > a\}.$$

Since b > 0, when k is big enough, kb would be greater than a, so S is nonempty. By definition, all elements in S are greater than a. By the The Well-ordering Principle, S has a least element, say (q+1)b, where $q \in \mathbb{Z}$. Then (q+1)b > a. Now we look at qb. Since qb < (q+1)b, $qb \notin S$. While $q \in \mathbb{Z}$, so the only violation is that $qb \leq a$. Hence

$$qb \le a < (q+1)b.$$

Finally we let r = a - qb. Then $0 \le r < (q+1)b - qb = b$.

マロト イヨト イヨ

Division algorithm

Corollary

For any integer a and integer b > 0, the quotient of a/b is $q = \lfloor \frac{a}{b} \rfloor$ and r = a - qb.

伺 ト イヨト イヨ

Division algorithm

Corollary

For any integer a and integer b > 0, the quotient of a/b is $q = \lfloor \frac{a}{b} \rfloor$ and r = a - qb.

Remark

In practice, it is essential to find the consecutive integers that $\frac{a}{b}$ is between them.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

A more general version

Theorem (Quotient-remainder Theorem)

Given any integer a and integer $b \neq 0$, there exists a unique pair of integers q and r such that

$$a = qb + r$$

and $0 \leq r < |b|$.

A B F A B F

A more general version

Theorem (Quotient-remainder Theorem)

Given any integer a and integer $b \neq 0$, there exists a unique pair of integers q and r such that

$$a = qb + r$$

and $0 \leq r < |b|$.

Corollary

For any integer a and integer b < 0, the quotient of a/b is $q = \left\lceil \frac{a}{b} \right\rceil$ and r = a - qb.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example: find the quotients and remainders

Example

Find the quotients and remainders for the following pairs of n and d:

(a)
$$n = 20$$
 and $d = 7;$

)
$$n = -8$$
 and $d = 3;$

→ < Ξ → <</p>

Example: find the quotients and remainders

Example

Find the quotients and remainders for the following pairs of n and d:

(a)
$$n = 20$$
 and $d = 7;$

)
$$n = -8$$
 and $d = 3;$

Solution

(a)
$$20 = 7 \cdot 2 + 6$$
 and $0 \le 6 < 7$, so $q = 2$ and $r = 6$.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Example: find the quotients and remainders

Example

Find the quotients and remainders for the following pairs of n and d:

(a)
$$n = 20$$
 and $d = 7;$

)
$$n = -8$$
 and $d = 3;$

Solution

(a)
$$20 = 7 \cdot 2 + 6$$
 and $0 \le 6 < 7$, so $q = 2$ and $r = 6$.
(b) $-8 = 3 \cdot (-3) + 1$ and $0 \le 1 < 3$, so $q = -3$ and $r = 1$.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Integers in other bases

When we write integers, we are using the **decimal representation**, which is base 10. For example,

 $123 = 100 + 20 + 3 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0.$

Integers in other bases

When we write integers, we are using the **decimal representation**, which is base 10. For example,

 $123 = 100 + 20 + 3 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0.$

In fact, for any integer b > 1, we can write integers in base b.

周 ト イ ヨ ト イ ヨ ト

Integers in other bases

When we write integers, we are using the **decimal representation**, which is base 10. For example,

$$123 = 100 + 20 + 3 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0.$$

In fact, for any integer b > 1, we can write integers in base b.

Definition

Let b > 1 be a fixed integer. For integer $N \ge 0$, base b representation of N is the unique expression

$$(a_{n-1}a_{n-2}\cdots a_0)_b,$$

where integers $0 \le a_i < b$ and $N = a_{n-1}b^{n-1} + a_{n-2}b^{n-2} + \dots + a_1b + a_0.$

・ 同 ト ・ ヨ ト ・ ヨ ト
Conversion to base b

Proposition

Let $N, b \in \mathbb{N}$ with b > 1. Suppose the quotient and remainder of a divided by b are q and r. If $q = (a_{n-1}a_{n-2}\cdots a_1)_b$, then $N = (a_{n-1}a_{n-2}\cdots a_1r)_b$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Conversion to base b

Proposition

Let $N, b \in \mathbb{N}$ with b > 1. Suppose the quotient and remainder of a divided by b are q and r. If $q = (a_{n-1}a_{n-2}\cdots a_1)_b$, then $N = (a_{n-1}a_{n-2}\cdots a_1r)_b$.

Remark

In order to convert N to base b, we keep dividing by b. In each round of division, the remainder becomes the next rightmost digit, and we divide b from quotient next, until the quotient becomes zero.

・ 同 ト ・ ヨ ト ・ ヨ ト

Division and divisibility Euclidean algorithm

Example: convert to hexadecimal representation

Remark

"Base 16" is called hexadecimal representation. The digits 10 through 15 are denoted by the uppercase letters A through F.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Remark

"Base 16" is called hexadecimal representation. The digits 10 through 15 are denoted by the uppercase letters A through F.

Example

Convert $(2159)_{10}$ to hexadecimal representation.

・ 同 ト ・ ヨ ト ・ ヨ ト

Remark

"Base 16" is called hexadecimal representation. The digits 10 through 15 are denoted by the uppercase letters A through F.

Example

Convert $(2159)_{10}$ to hexadecimal representation.

Solution

2159 divided by 16, we get $2159 = 134 \cdot 16 + 15$.

・ 同 ト ・ ヨ ト ・ ヨ

Remark

"Base 16" is called hexadecimal representation. The digits 10 through 15 are denoted by the uppercase letters A through F.

Example

Convert $(2159)_{10}$ to hexadecimal representation.

Solution

2159 divided by 16, we get $2159 = 134 \cdot 16 + 15$. 134 divided by 16, we get $134 = 8 \cdot 16 + 6$.

・ 同 ト ・ ヨ ト ・ ヨ

Remark

"Base 16" is called hexadecimal representation. The digits 10 through 15 are denoted by the uppercase letters A through F.

Example

Convert $(2159)_{10}$ to hexadecimal representation.

Solution

2159 divided by 16, we get $2159 = 134 \cdot 16 + 15$. 134 divided by 16, we get $134 = 8 \cdot 16 + 6$. 8 divided by 16, we get $8 = 0 \cdot 16 + 8$. So

 $(2159)_{10} = (86F)_{16}.$

Prime numbers

Definition

For $p \in \mathbb{N}$, p is called a prime number if p > 1 and p has no positive divisors other than 1 and p. For q > 1, if q is not prime, then q is called a composite number.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Prime numbers

Definition

For $p \in \mathbb{N}$, p is called a prime number if p > 1 and p has no positive divisors other than 1 and p. For q > 1, if q is not prime, then q is called a composite number.

Remark

Warning! 1 is neither prime nor composite.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Prime numbers

Definition

For $p \in \mathbb{N}$, p is called a prime number if p > 1 and p has no positive divisors other than 1 and p. For q > 1, if q is not prime, then q is called a composite number.

Remark

Warning! 1 is neither prime nor composite.

Example

The smallest prime numbers are

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \cdots
```

Division and divisibility Euclidean algorithm

Existence of prime divisor

Proposition

For every integer n > 1, there exists a prime number p with $p \mid n$.

Proof.

Consider the set $\{n \in \mathbb{N} \mid n > 1, n \text{ has no prime divisor}\}$.

★ Ξ →

Proposition

For every integer n > 1, there exists a prime number p with $p \mid n$.

Proof.

Consider the set $\{n \in \mathbb{N} \mid n > 1, n \text{ has no prime divisor}\}$. If it is nonempty, by well-ordering principle it has a least element m.

Proposition

For every integer n > 1, there exists a prime number p with $p \mid n$.

Proof.

Consider the set $\{n \in \mathbb{N} \mid n > 1, n \text{ has no prime divisor}\}$. If it is nonempty, by well-ordering principle it has a least element m. Since $m \mid m, m$ itself is not prime.

Proposition

For every integer n > 1, there exists a prime number p with $p \mid n$.

Proof.

Consider the set $\{n \in \mathbb{N} \mid n > 1, n \text{ has no prime divisor}\}$. If it is nonempty, by well-ordering principle it has a least element m. Since $m \mid m, m$ itself is not prime. So there exists 1 < a < m such that $a \mid m$. Then a is not in the set and a has a prime divisor p.

Proposition

For every integer n > 1, there exists a prime number p with $p \mid n$.

Proof.

Consider the set $\{n \in \mathbb{N} \mid n > 1, n \text{ has no prime divisor}\}$. If it is nonempty, by well-ordering principle it has a least element m. Since $m \mid m, m$ itself is not prime. So there exists 1 < a < m such that $a \mid m$. Then a is not in the set and a has a prime divisor p. Finally $p \mid a, a \mid m$ implies $p \mid m$, a contradiction. Division and divisibility Euclidean algorithm

There are infinitely many prime numbers

Theorem

There are infinitely many prime numbers.

• = • •

There are infinitely many prime numbers

Theorem

There are infinitely many prime numbers.

Proof.

We prove by contradiction. Suppose there are finitely many prime numbers p_1, p_2, \cdots, p_n . Let N be their product plus 1. Then none of them can be a divisor of N, so N has no prime divisor, a contradiction!

There are infinitely many prime numbers

Theorem

There are infinitely many prime numbers.

Proof.

We prove by contradiction. Suppose there are finitely many prime numbers p_1, p_2, \cdots, p_n . Let N be their product plus 1. Then none of them can be a divisor of N, so N has no prime divisor, a contradiction!

Remark

There are numerous proofs of this fact. This elegant short proof is by Ancient Greek mathematician Euclid.

くロト く伺下 くきト くきり

Euclidean algorithm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Division and divisibility Euclidean algorithm

Greatest Common Divisor

Definition

For $a, b \in \mathbb{Z}$ not both zero, the greatest common divisor of a, b, denoted gcd(a, b), is the large common divisor g of a and b.

伺 ト イヨ ト イヨト

Greatest Common Divisor

Definition

For $a, b \in \mathbb{Z}$ not both zero, the greatest common divisor of a, b, denoted gcd(a, b), is the large common divisor g of a and b.

Remark

Since 1 divides every integer, a and b always have at least one common divisor. And each common divisor is at most $\max(|a|, |b|)$, so $\gcd(a, b)$ is well-defined.

• • = • • = •

Least Common Multiple

Definition

For nonzero $a, b \in \mathbb{Z}$, the least common multiple of a, b, denoted lcm(a, b), is the smallest positive common multiple l of a and b.

Remark

Since |ab| is always one common multiple, lcm(a, b) is well-defined by the well-ordering principle.

伺 ト イ ヨ ト イ ヨ

Relatively prime

Definition

Integers a and b are called **relatively prime** (or **coprime**) if gcd(a, b) = 1. In other words, a and b don't have any common divisor greater than 1 and they don't have a common prime divisor.

• • • • • • •

Relatively prime

Definition

Integers a and b are called **relatively prime** (or **coprime**) if gcd(a, b) = 1. In other words, a and b don't have any common divisor greater than 1 and they don't have a common prime divisor.

Example

1 and any integer are relatively prime. n and n+1 are always relatively prime.

.

Division and divisibility Euclidean algorithm

Examples: find gcd and lcm

Exa	Example		
Fin	Find		
٦	gcd(15,6);		
٥	lcm(4, 14).		

・ 同 ト ・ ヨ ト ・ ヨ

Division and divisibility Euclidean algorithm

Examples: find gcd and lcm

Example	
Find	
(a) $gcd(15,6);$	
(a) $lcm(4, 14).$	

Solution

(a) $15 = 5 \cdot 3, 6 = 2 \cdot 3$, and they don't have a bigger common divisor. So gcd(15, 6) = 3.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Examples: find gcd and lcm

Example	
Find	

0	gcd(15, 6);
9	gca(10, 0);

b lcm(4, 14).

Solution

(a) $15 = 5 \cdot 3, 6 = 2 \cdot 3$, and they don't have a bigger common divisor. So gcd(15, 6) = 3. (b) 14 itself is not a multiple of 4. The next multiple of 14 is $2 \cdot 14 = 28 = 7 \cdot 4$, which is a multiple of 4. So lcm(4, 14) = 28.

・ 同 ト ・ ヨ ト ・ ヨ ト

Examples: find gcd and lcm

Example

Find

- (a) gcd(15, 6);
- **b** lcm(4, 14).

Solution

(a) $15 = 5 \cdot 3, 6 = 2 \cdot 3$, and they don't have a bigger common divisor. So gcd(15, 6) = 3. (b) 14 itself is not a multiple of 4. The next multiple of 14 is $2 \cdot 14 = 28 = 7 \cdot 4$, which is a multiple of 4. So lcm(4, 14) = 28.

Remark

We need a systematic method to compute gcd and lcm.

< ロ > < 同 > < 回 > < 回 >

Euclidean algorithm

Proposition

For integers a, b, q, r, if a = qb + r, then gcd(a, b) = gcd(b, r).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Euclidean algorithm

Proposition

For integers a, b, q, r, if a = qb + r, then gcd(a, b) = gcd(b, r).

Remark

Note that r < b, so we reduce the pair of integers in each division. Eventually we will end up with a remainder r = 0, and then gcd(b, r) = b. This method is called the **Euclidean Algorithm**.

伺 ト イヨト イヨト

Division and divisibility Euclidean algorithm

Example: apply Euclidean algorithm

Example

Find gcd(630, 196).

Bo Lin Math 2603 - Lecture 7 Section 4.1 to 4.3 Division and prime nu

伺 ト イ ヨ ト イ ヨ

Example

Find gcd(630, 196).

Solution

First, $630 = 3 \cdot 196 + 42$. It suffices to find gcd(196, 42).

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Example

Find gcd(630, 196).

Solution

First, $630 = 3 \cdot 196 + 42$. It suffices to find gcd(196, 42). Second, $196 = 4 \cdot 42 + 28$. It suffices to find gcd(42, 28).

伺 ト イヨト イヨ

Example

Find gcd(630, 196).

Solution

First, $630 = 3 \cdot 196 + 42$. It suffices to find gcd(196, 42). Second, $196 = 4 \cdot 42 + 28$. It suffices to find gcd(42, 28). Third, $42 = 1 \cdot 28 + 14$. It suffices to find gcd(28, 14).

伺き イヨト イヨ

Example

Find gcd(630, 196).

Solution

First, $630 = 3 \cdot 196 + 42$. It suffices to find gcd(196, 42). Second, $196 = 4 \cdot 42 + 28$. It suffices to find gcd(42, 28). Third, $42 = 1 \cdot 28 + 14$. It suffices to find gcd(28, 14). Finally, $28 = 2 \cdot 14 + 0$. Hence gcd(630, 196) = 14.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Bezout's Theorem

Theorem (Bezout's Theorem)

Let $a, b \in \mathbb{Z}$ and g = gcd(a, b). Then there exist integers m, n such that g = ma + nb.

• • • • • • •
Theorem (Bezout's Theorem)

Let $a, b \in \mathbb{Z}$ and g = gcd(a, b). Then there exist integers m, n such that g = ma + nb.

Remark

Euclidean Algorithm can explicitly find m and n.

→ < Ξ → <</p>

Theorem (Bezout's Theorem)

Let $a, b \in \mathbb{Z}$ and g = gcd(a, b). Then there exist integers m, n such that g = ma + nb.

Remark

Euclidean Algorithm can explicitly find m and n.

Example (Example revisited)

 $630 = 3 \cdot 196 + 42$ implies $42 = 1 \cdot 630 + (-3) \cdot 196$.

Theorem (Bezout's Theorem)

Let $a, b \in \mathbb{Z}$ and g = gcd(a, b). Then there exist integers m, n such that g = ma + nb.

Remark

Euclidean Algorithm can explicitly find m and n.

Example (Example revisited)

 $630 = 3 \cdot 196 + 42 \text{ implies } 42 = 1 \cdot 630 + (-3) \cdot 196.$ $196 = 4 \cdot 42 + 28 \text{ implies}$ $28 = 1 \cdot 196 - 4 \cdot (1 \cdot 630 + (-3) \cdot 196) = (-4) \cdot 630 + 13 \cdot 196.$

Theorem (Bezout's Theorem)

Let $a, b \in \mathbb{Z}$ and g = gcd(a, b). Then there exist integers m, n such that g = ma + nb.

Remark

Euclidean Algorithm can explicitly find m and n.

Example (Example revisited)

 $\begin{array}{l} 630 = 3 \cdot 196 + 42 \; \textit{implies} \; 42 = 1 \cdot 630 + (-3) \cdot 196. \\ 196 = 4 \cdot 42 + 28 \; \textit{implies} \\ 28 = 1 \cdot 196 - 4 \cdot (1 \cdot 630 + (-3) \cdot 196) = (-4) \cdot 630 + 13 \cdot 196. \\ 42 = 1 \cdot 28 + 14 \; \textit{implies} \\ 14 = (1 \cdot 630 + (-3) \cdot 196) - 1 \cdot ((-4) \cdot 630 + 13 \cdot 196) = \\ 5 \cdot 630 + (-16) \cdot 196. \; \textit{So} \; m = 5, n = -16. \end{array}$

Division and divisibility Euclidean algorithm

Relation between \gcd and \lg

Proposition

For nonzero $a, b \in \mathbb{Z}$, we have gcd(a, b) lcm(a, b) = |ab|.

Bo Lin Math 2603 - Lecture 7 Section 4.1 to 4.3 Division and prime nu

伺下 イヨト イヨト

Relation between \gcd and lcm

Proposition

For nonzero $a, b \in \mathbb{Z}$, we have gcd(a, b) lcm(a, b) = |ab|.

Remark

So in order to compute lcm(a, b), we can use Euclidean Algorithm to compute gcd(a, b) first.

伺 ト イヨト イヨ

Division and divisibility Euclidean algorithm

HW Assignment #4 - today's sections

Section 4.1 Exercise 4, 7, 8, 11(a). Section 4.2 Exercise 7, 11, 12(a)(d), 27.

Bo Lin Math 2603 - Lecture 7 Section 4.1 to 4.3 Division and prime nu

▲ 同 ▶ ▲ 国 ▶ ▲ 国